
AFIT/GCS/ENG/98M-01 

Methodology for the Analysis and Design 
of Internet Software Components 

Providing Relational Database Access 
Through the World Wide Web 

THESIS 
Daniel L. DiPiro 

Captain, USA 

AFIT/GCS/ENG/98M-01 

Approved for public release; distribution unlimited 

19980410 078 



AFIT/GCS/98M-01 

Methodology for the Analysis and Design of Internet Software Components 

Providing Relational Database Access Through the World Wide Web 

THESIS 

Presented to the Faculty of the Graduate School of Engineering 

of the Air Force Institute of Technology 

In Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science in Computer Systems 

Daniel L. DiPiro, B. S. 

Captain, USA 

March 1998 

Approved for public release, distribution unlimited 



AFIT/GCS/98M-01 

Methodology for the Analysis and Design of Internet Software Components 

Providing Relational Database Access Through the World Wide Web 

THESIS 

Daniel L. DiPiro 
Captain, USA 

Presented to the Faculty of the Graduate School of Engineering 

of the Air Force Institute of Technology 

In Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science in Computer Systems 

Richard A. Raines, Ph.D., Major Henry BrPotoczny, Ph.D. (/ 
Committee Member Committee Member 

Michael L\ Talbert, Ph.D., Major 
Committee Chairman 



The views expressed in this thesis are those of the author and do not reflect the official policy or 
position of the Department of Defense or the U.S. Government. 

The use of "he" is intended to indicate both the male and female gender. 



Acknowledgements 

I wish to thank my thesis advisor, Major Talbert, for his sound support, guidance, and 

much needed course corrections. I would also like to thank my committee members, Major 

Raines and Dr. Potoczny for additional support and guidance on both my research and my studies 

atAFTT. 

My greatest thanks and appreciation go to my wife Gaile and my children, Danielle and 

Patrick. Their sacrifices have made it possible for me to pursue my studies at AFIT. They 

continue to be the foundation upon which I can rely in both calm and stress. 

Thanks are also due to the AFIT staff and faculty, especially Angela, Carolyn and Mary 

Jane, that have provided more assistance, and support then this Army student was expecting or 

was used to. I would also like to thank my sponsor, AFIT/CI for their assistance and constructive 

input to my research. 



Table of Contents 

1 Introduction 1-1 

1.1 Problem Statement 1-1 

1.2 Goals of this Research 1-1 

1.3 Case Study 1-2 

1.4 Thesis Overview 1-3 

2 Background 2-1 

2.1 A brief history of the client-server model 2-1 

2.2 Elements of the client-server model 2-2 

2.3 Two vs. three-tiered database access architecture 2-3 

2.3.1 Two-tiered database access architecture 2-3 

2.3.2 Three-tiered database access architecture 2-4 

2.4 Emergence of the Internet and World Wide Web 2-5 

2.5 What the World Wide Web brings to the table 2-9 

2.6 Potential difficulties in introducing the web to the client-server environment 2-10 

2.6.1 Choosing standards to use in implementing Internet access to a database 2-11 

2.6.2 The stateless nature of the web 2-11 

2.6.3 The web and legacy middleware 2-12 

2.7 Software Technologies for Web-Database Integration 2-12 

2.7.1 Client-side technologies 2-13 

2.7.2 Server-side technologies 2-21 

2.7.3 Web component communication techniques 2-28 

2.7.4 Database access techniques 2-36 

2.7.5 Summary 2-39 



3     Methodology for providing web-based database access 3-1 

3.1 Methodology steps 3-1 

3.2 Development Environment Analysis 3-1 

3.2.1 Client Environment 3-2 

3.2.2 Analysis of the Existing Data Source Architecture 3-7 

3.2.3 Existing Resource Environment 3-11 

3.3 Component Analysis and Design 3-15 

3.3.1 Functional Analysis Overview 3-16 

3.3.2 Component Functional Decomposition 3-18 

3.4 Function Implementation 3-19 

3.4.1 Component Interface Definition 3-19 

3.4.2 Implementing sub-components 3-23 

3.5 Summary 3-24 

4 Implementation of Methodology for the Case Study 4-1 

4.1 Analysis of key development environment factors 4-1 

4.1.1 Analysis of the AFIT/CI client environment 4-2 

4.1.2 Analysis of the existing database architecture 4-6 

4.1.3 Analysis of development resources 4-7 

4.2 Component analysis and design 4-8 

4.2.1 Component 1 (Institution / Program Information Search) 4-8 

4.2.2 Component 2 (CI Student Personal Data Update) 4-14 

4.2.3 Component 3 (CI Student Training Input) 4-20 

4.2.4 Summary 4-28 

5 Findings and Conclusions 5-1 

5.1   Findings 5-1 

5.1.1     Overview 5_1 

in 



5.1.2    Issues regarding application of methodology and technologies applied 5-3 

5.2 Recommendations 5-7 

5.2.1 Existing CI Database 5-7 

5.2.2 Data security measures 5-8 

5.3 Conclusions 5-9 

5.4 Future work 5-9 

5.4.1 Using CORBA for distributed data access 5-9 

5.4.2 Varying server responses based on client platform configurations 5-10 

5.5 Remarks 5-11 

IV 



Table Of Figures 

Figure 1. Client-server Architecture 2-2 

Figure 2. Three Tiered Client-Server Architecture 2-4 

Figure 3. Example HTML Document 2-7 

Figure 4. HTML Document in Browser Window 2-8 

Figure 5. Example URL 2-8 

Figure 6. JavaScript Code Example 2-14 

Figure 7. JavaScript Execution in Client Browser 2-14 

Figure 8. Comparison of web server processing techniques 2-26 

Figure 9. Invoking a method on a remote object via an ORB 2-34 

Figure 10. Embedded SQL example 2-37 

Figure 11. Factors influencing component development 3-2 

Figure 12. Client Environment 3-3 

Figure 13. JavaScript Error in Client Browser 3-5 

Figure 14. DFD for Schedule Library Room Component 3-17 

Figure 15. Lowest Level DFD of Room Scheduling Component 3-18 

Figure 16. Interfaces to Client-side Compiled Components 3-20 

Figure 17. Interfaces to Stand-alone Applications 3-21 

Figure 18. Interfaces to Web Server Processes 3-21 

Figure 19. Interface to a Static HTML document 3-22 

Figure 20. Level 0 DFD for Institution Search Component 4-9 

Figure 21. First Level Decomposition of Institution Search Component 4-10 

Figure 22. Lowest Level Decomposition of Institution Search Component 4-10 

Figure 23. Screen-shot of sub-component 1.1 4-12 



Figure 24. Screen-shot of sub-component 1.3 4-12 

Figure 25. Screen-shot of sub-component 2.2 4-13 

Figure 26. Component DFD with implementation technologies 4-14 

Figure 27. Level 0 DFD for Personal Data Update Component 4-15 

Figure 28. First Level Decomposition of Personal Data Update Component 4-15 

Figure 29. Lowest Level Decomposition of Personal Data Update Component 4-16 

Figure 30. Screen shot of sub-component 1 4-17 

Figure 31. Screen-shot of sub-component 2.2 4-18 

Figure 32. Mail sent to the database administrator 4-19 

Figure 33. Screen-shot of sub-component 3.2 4-19 

Figure 34. Component DFD with implementation technologies 4-20 

Figure 35. Level 0 DFD for Training Input Component 4-22 

Figure 36. First Level Decomposition of Training Input Component 4-22 

Figure 37. Lowest Level Decomposition of Training Input Component 4-23 

Figure 38. Screen-shot of sub-component 2.2 4-25 

Figure 39. Screen-shot of sub-component 3.2 4-26 

Figure 40. Screen-shot of sub-component 3.4 4-26 

Figure 41. Component DFD with implementation technologies 4-27 

vi 



List of Tables 

Table 1. Web Technology Features 2-39 

Table 2. Comparison of Inter-Application Communication Techniques 2-39 

Table 3. Sample ofWeb Server Pricing 3-13 

Table 4. Sample of Development Tool Costs 3-14 

vn 



List of Trademarks 

1. Apache is a registered trademark of the Apache Group 

2. Common Object Request Broker Architecture (CORBA) is a registered trademark of Object 
Management Group 

3. FormFlow is a registered trademark of Delrina Corporation. 

4. Macintosh is a registered trademark of Apple Computer Inc. 

5. Microsoft, ActiveX, ActiveX Server Pages, BackOffice, Distributed Component Object 
Model (DCOM), Internet Explorer, Internet Information Server, JScript, Microsoft Access, 
Microsoft SQL Server, Open Database Connectivity (ODBC), Object Linking and 
Embedding (OLE), Object Description Language (ODL), Personal Web Server, VBScript, 
Visual Basic, Visual C++, Visual J++, Win32, Windows, Windows 95, and Windows NT are 
registered trademarks of Microsoft Corporation. 

6. Mosaic is a registered trademark of the National Center for Supercomputing Applications 
(NCSA) 

7. Netscape, Navigator, and Communicator are registered trademarks of Netscape 
Communications Corporation 

8. Oracle and Designer 2000 are registered trademarks of Oracle Corporation 

9. Perl is a registered trademark of Larry Wall. 

10. Rexx is a registered trademark of International Business Machines 

11. Sun, Sun Microsystems, JDK, Java, JavaScript, JDBC, HotJava, Remote Method Invocation, 
and Servlet are registered trademarks of Sun Microsystems Inc. 

12. Unix is a registered trademark licensed through X/Open Company Ltd. 

13. VMS is a registered trademark of Digital Equipment Corporation. 

Other product and company names mentioned herein may be the trademarks of their respective 
owners. 

vni 



AFIT/GCS/ENG/98M-01 

Abstract 

This work examines the application of Internet software technologies to provide access to 

remote relational databases via the World Wide Web. The research applies these software 

technologies to assist the Air Force Institute of Technology Civilian Institute Program in 

improving operations and student-to-staff communication. 

An analysis of the existing Internet software technologies revealed several competing 

technologies capable of performing the same database access functions. The analysis further 

revealed weaknesses and inconsistencies in the existing AFIT/CI database. A methodology is 

proposed to assist in analyzing an existing development environment and in selecting among the 

competing technologies to provide the web-based database access. The methodology is applied 

to the AFIT/CI test case to demonstrate a technique of analyzing and designing web software 

components that will create new and improved uses for the existing CI database. Additional 

recommendations are also offered to improve the existing database operations. The results of 

applying the methodology demonstrated that it effectively focuses the developer on the key areas 

of the development environment necessary to choose among competing software technologies. 

Additionally, the methodology was proven to be flexible in response to changes in 

implementation technologies. 

IX 



1     Introduction. 

The introduction of the Internet and World Wide Web (a.k.a. WWW or web) to the 

computing world are having a great impact on the traditional client-server architecture used for 

remote database access. The introduction of the WWW to the Internet has spawned an enormous 

growth in the number of personal and business computers interconnected worldwide. This has in 

turn provided impetus for commercial, military and educational enterprises to make their data 

available to a greater number of clients through this new medium. This access has been aided by 

the introduction of several Internet software technologies including powerful web servers and 

client web browser applications that have enabled the WWW to be used in a client-server role. 

These applications benefit the developer by reducing or eliminating the need to develop and 

distribute a client-side interface and have allowed clients to access multiple data sources with a 

single client interface (the web browser). 

1.1 Problem Statement. 

While the emergence of Internet software technologies has made overall improvements to 

the client-server architecture, the existence of many competing and incompatible standards for 

implementing web-based data access have made it difficult for the developer to choose a 

particular technology. The client is also affected by experiencing limited or no access to server 

and data resources that may be incompatible with their web browser software. While countless 

books and research are devoted to developing applications in each of these technologies, less 

information is available for a developer to analyze their requirements and the available Internet 

software technologies to choose the ones that best fit their needs. 

1.2 Goals of this Research. 

The goal of this research is to provide a methodology that can be used in the analysis of a 

1-1 



web-based data access enterprise to aid the developer in choosing the right software technologies 

to implement their data access services.   Additionally this research will demonstrate through the 

use of a case study that the methodology can be used to develop Internet software components 

that provide a new or more efficient use of legacy relational data sources. Each major Internet 

software technology will be analyzed according to the functional capability it brings to the client- 

server architecture and its capabilities and limitations. Through the methodology, this research 

develops a process to analyze the existing client and server environment affecting any design 

decisions. It also shows a method for functionally decomposing a web software component into 

sub-components. Once a component is decomposed, the developer can then use the existing 

environmental factors and knowledge of the tradeoffs accompanying the software technologies to 

decide how to implement the data access provided by the component. 

1.3     Case Study 

To test the methodology for implementing World Wide Web (WWW) based software 

technology the current and desired operations of the Air Force Institute of Technology Civilian 

Institution program office (AFIT/CI) will be used as a test case. Specifically, this research will 

involve designing three Internet software components to facilitate Web-based interaction between 

AFIT/CI and its current and prospective students. 

Annually, AFIT/CI administers the academic programs of over 2,300 students in long-term 

graduate programs at over 400 institutions and 3,600 professional continuing education students. 

Each student is assigned to a Program Managers (PMs) within AFIT/CI who oversees that 

students educational program. Current and prospective CI student and Program Manager 

interaction consists mainly of telephone conversations, paper documents sent via mail, and 

electronic mail. Existing data sources are currently only available in-house to the CI staff and are 

largely limited to a few pre-defined queries and printed reports.   A few essentially isolated Web 

pages currently offer static information, manually updated by CI personnel as needed, to 

1-2 



prospective and current students. 

The new Internet software components would benefit both prospective and current students 

by providing them with timely and accurate program-critical administrative information 

electronically from a central CI web site. Additionally it would improve student to PM 

interaction by creating several new automated functions to aid the student in not only viewing and 

updating their personal data, but also with the preparation of any required reports submitted to 

their PM. The components should also benefit the PM by minimizing the amount of time spent 

answering frequently asked questions and allowing him/her to receive more accurate and timely 

student input. The components should make maximum use of the CI database to assist the PM in 

managing his/her students. 

1.4     Thesis Overview. 

Chapter 2 provides a brief history of the client-server architecture and how the emergence 

of the Internet and World Wide Web has enhanced the traditional client-server model. Current 

Internet software technologies are discussed and compared with respect to their capabilities, 

limitations, and their benefits to the client-server architecture. Chapter 3 covers the methodology 

used to evaluate and choose the technologies necessary to implement the test case.   The 

methodology examines the key environmental factors affecting the design of web software 

components and the areas in which they should influence design decisions.   Additionally a 

method to functionally analyze components is presented to assist in determining which 

technologies are capable of fulfilling the requirements of a component. Chapter 4 discusses the 

implementation of the three Internet software components comprising the test case and finally, 

Chapter 5 contains conclusions and areas for further research. 

1-3 



2     Background 

In this chapter, some background material is provided on the client-server model, the 

World Wide Web, and the new software technologies that the World Wide Web brings to the 

client-server environment. Each technology is covered with respect to its features, capabilities, 

pros, cons, and future impacts. 

2.1     A brief history of the client-server model. 

In the early days of computers, data processing was handled in a centralized manner in 

which all processing tasks were handled by one computer. Users communicated with the central 

processor through dumb terminals that allowed them to input commands to the central processor 

which then performed the desired database operations. These operations were typically 

Structured Query Language (SQL) commands or specific operations on structured data files. 

Results and status messages were sent back to the user on the terminal screen. Remote users 

would use a communications utility with terminal emulation to achieve the same connectivity as 

local users. 

As technology improved and the number of users increased, centralized computers with 

many users experienced poor performance due to the processor and I/O limitations of the 

hardware. To fix this problem, computer architects sought ways to minimize the central 

processor's workload and distribute the processing tasks. The client-server model was born out of 

this desire for efficient distributed computing. As computers became faster, cheaper, and smaller, 

this model came to the forefront of applications development. 

Figure 1 shows the client-server model in which the user operates a client computer, which 

interacts with a central server over a communication network. The server handles all access to the 

desired data and passes results back to the client who processes the results locally. Although the 

client-server model eased the workload of the server, it added new areas of concern for both 

2-1 



network engineers and applications programmers. 

Database 

Client running application 
program 

jgm$s, 
Database Server 

Figure 1. Client-server Architecture 

In the client-server architecture, more data was now being sent over the communications 

network. Network designers now had to compensate for the increase in traffic over the 

communications links to sustain desired performance levels. Formerly, all applications resided 

on one machine making it easy for applications developers to manage. Now they have to deal 

with separate client and server applications that could reside on many different computer 

platforms. This new model also introduced heterogeneity in software and hardware that had 

previously been minimal or non-existent. The client was often using a different hardware and 

software platform than the server. The client possibly also resided on a different communications 

network architecture. This resulted in a need 'middleware' to facilitate cross-platform operations. 

Specific roles of middleware are the subject of subsequent sections. 

2.2     Elements of the client-server model. 

Although there are several variations of the client-server model, they all typically have 

the following in common: 

a. Server(s). A central computer, which receives remote requests for information, 

obtains the information from a central data source, and sends results or messages back to the 

remote user (client). Processing that occurs on the server is often referred to as 'back-end' 

2-2 



processing. 

b. Client. A process which interacts with one or more central servers, providing a user 

interface, formatting service requests, communicating requests to the back-end process, and 

displaying or processing end results or messages returned from the server. Processing that occurs 

on the client machine is often referred to as 'front-end' processing. 

c. Middleware. Since even in the same enterprise there can exist hardware and software 

incompatibilities between the clients and server, middleware applications must be designed to 

bridge this gap. Middleware handles processing tasks such as user interface processing, 

communications with the server, and returned data processing routines. Since the hardware and 

software of the clients were known, the applications programmer could build the appropriate 

middleware to overcome any heterogeneity in hardware, software, file formats, or 

communications protocols. 

2.3     Two vs. three-tiered database access architecture. 

Client-server applications are commonly modeled using a tiered concept. The number of 

tiers used in client-server applications will typically be two or three. The benefits and drawbacks 

of a two- and three-tiered implementation for web database access are compared in the following 

two sections. 

2.3.1     Two-tiered database access architecture 

In a two-tiered architecture, the client deals directly with the application server, in this 

case the database server (Figure 1). All requests for data are passed to the server who sends the 

results back to the client for processing. 

The major advantage of the two-tiered approach is that because all processing of data is 

done at the client, the workload of the server is kept to a minimum. This may be beneficial if the 

server is of limited capability, has a large workload, or if the number of clients who will be 

2-3 



processing large sets of retrieved data is significant. 

Another benefit of this model is that it is architecturally simple. There are only two 

application layers, and therefore it requires minimal inter-tier communications. The simplicity 

reduces the potential for system failure due to communications problems between tiers. 

The disadvantages of the two-tiered model include the necessity of a more 

complex, 'fatter', client, and increased potential for data security problems. There is no server- 

side processing and therefore the client must implement any functions that process the retrieved 

data. This 'fat' client will consume more client processor resources and occupy increased storage 

space on the client's machine. The potential for data security problems is increased since the 

client interfaces directly with the database server. 

2.3.2     Three-tiered database access architecture 

In a three-tiered architecture (Figure 2) the client communicates with the server only 

indirectly through middleware. The middleware application requests the data from the database 

server and may process all or part of the data returned by the server in the middle tier. 

Data request 

IL. i\ 

Results 
(possibly filtered) 

Client running 
application 

program 

SQL 
Statements 

Communication 
Network 

Middle Tier 
Application Result 

Set 

too a 

1 Database 

m/ 
Database Server 

Figure 2. Three Tiered Client-Server Architecture 

The advantages of the three-tiered approach are a less complex 'thin' client, more 

efficient utilization of communications bandwidth and increased data security. Middle-tier 

processing allows off loading of processing functions from the client, providing a client that is 

easier to design and maintain, and requires less resources from its host. This is beneficial if the 

client's host has limited processing or storage capability. 

2-4 



The middle tier will most often be placed in a location that provides a fast 

communication path to the data source. Middle-tier processing of the data, may reduce the results 

of a database operation significantly. This can result in a minimal set of results being sent back to 

the client. That data reduction, in conjunction with the increased communications speed from the 

middle tier to the data source, improves communications bandwidth utilization over the two-tier 

approach. 

Additional data security is also obtained because all client access to data can be 

controlled through the middle-tier application, which can be configured to provide access through 

a 'firewall' if necessary. This provides increased data security to applications in which tight 

control over data access is required. 

The disadvantages of this approach however are an increase in architectural complexity 

and increase in server workload. The addition of a third layer requires increased inter-tier 

communications to pass requests and data between the layers. This increased interaction makes a 

three-tiered design more difficult to create and maintain, increasing the potential for an overall 

system failure due to inter-tier communications problems. Additionally, performance may suffer 

if the number of clients accessing the services of the middle tier is large and its host computer can 

not adequately handle the increased client load. 

2.4     Emergence of the Internet and World Wide Web. 

In recent years, several forces in the computer world have led to changes in the client- 

server model. The process that resulted in these changes was the evolution of the Advanced 

Research Project Agency Network (ARPNET) into what is called the Internet today. ARPANET 

was the distributed communications networking backbone designed in the 1960s for use by the 

government in case of nuclear war. In 1990 the government separated the military portion of the 

network (MILNET) and decommissioned the rest, in effect giving its administration to the 

National Science Foundation (NSF). Until that time the network was used almost entirely for 

2-5 



research, education and government purposes. The NSF in 1995 announced that it would contract 

the administration of the network to four private companies, forming the Internet Society 

[Kristula97]. 

This process was not alone in its effect on the current state of the Internet. Three other 

factors have contributed to the Internet's rise to prominence in the computing world. The first is 

the availability of inexpensive desktop computers that are in use in both the home and workplace. 

In 1990 there were approximately 313,000 hosts connected to the Internet. Today there are over 

15 million hosts and that number grows rapidly each year [Kristula97]. The second factor is the 

creation of numerous Internet service providers (ISPs) that allowed those inexpensive desktop 

computers to connect to the Internet at an affordable price. The third, and arguably most notable, 

was the development of the World Wide Web. 

The World Wide Web was born out of a system created in 1990 by the European 

Laboratory for Particle Physics Research (CERN) as a way for physicists to share large amounts 

of text-based information in a distributed manner. The system made use of hypertext documents 

to display information. A hypertext document is a document that contains text with embedded 

links to other similar documents. A web user could follow links in one document to related 

documents or other web sites. This haphazard and deliberately unregulated cross-linking of 

documents led to its obvious comparison to a spider web, and its name, as it is known today. 

The software that is used to view web documents, also called pages, is called a web 

browser. Early web browsers supported the viewing of text only documents. Led by the 

introduction of the first graphical web browser, Mosaic, in 1993 [Kristula97], today's browsers 

support a greater variety of formats. Current browsers additionally support images, audio, video, 

email and embedded program code. As of the time of this writing there are many versions of 

browsers from many vendors, notably Microsoft and Netscape. Although each version may differ 

slightly in what it supports, they typically all support a common baseline of functions, such as 

text formatting and multimedia object support. 

2-6 



The documents that a user views are encoded using the Hypertext Markup Language 

(HTML). HTML allows information to be encoded using 'tags', which indicate the format of the 

tagged item with nearly limitless variations [HTML96]. The tags allow the creator to encode text 

formatting, images, and links to other documents within the web page by enclosing them within a 

set of tags for a specific HTML option (Figure 3). The page is stored on the server and 

transmitted as ASCII text. The web browser of the client viewing the page, translates the HTML 

file and displays the information with the formatting. Figure 3 shows how a document looks when 

encoded in HTML. Figure 4 shows how that document looks when viewed through the users web 

browser. 

Formatted 
text 

-< 

Embedded 
image 

<HTML> 

<TITLE> This is an example of a web page written in HTML</TITLE> 

<BODY> 

<B>This is bold text.</B><BR> 
<U>This is underlined text.</U><BR> 
<CENTER> This is centered.</CENTERx 

<UL> 
<LI>ltem1 
<LI>ltem2 
<LI>ltem3 
</ULxbr> 

<IMG SRC="smiley.gif" ALIGN=CENTERxBR> 

<HR> 

<A HREF ="http://www.afit.af.mil/index.html"> Go to the AFIT Home 
Page. </A> 

</BODY> 
</HTML> 

Link to 
another web 

naee 

Figure 3. Example HTML Document 

2-7 



'ß>Ihis1s:Ä1e8s»MeM* -        '   HSSP 

£4»   £<*   View   £O    Fsvoatas    tH> 

B«k       •■■;f.i.-i 
. o    B    a ' ■©.    a'" sr ' ' & i «   "* 

Stop     Refredi    Hime   ;   Seweh   F«w«ilas   Hex»   Chanel; !     Pimt       F< 

This is bold text. 

This is underlined text. 

Iteml 

Item2 

Item3 

This is centered 

Go to the AfrlT Home Page. 

\M My CorTQutei ±1 

Figure 4. HTML Document in Browser Window 

Not surprisingly, the protocol used to request pages from web servers is called the 

Hypertext Transfer Protocol, or HTTP. Requests for web pages are sent from the browser to the 

web server in the form of an HTTP request1 [NWG97a]. The HTTP request contains a Uniform 

Resource Locator (URL) that states the protocol of the request, identifies the web server that has 

access to the desired HTML document, and the name of the document being requested 

[NWG97a]. Figure 5 shows an example URL. The URL indicates that the HTTP protocol will 

be used to connect to the server named "www.afit.af.mil" and request the HTML document 

"/mypath/index.html." 

Request 
protocol 

http://www.afit.af.mil/mypath/index.html 

-^    ^—,    >—,A— 
Name of web 
server 

Path to 
document 

HTML 
document 

Figure 5. Example URL 

Current browsers also support other protocols such as the File Transfer Protocol (FTP) 

2-8 



2.5     What the World Wide Web brings to the table. 

While the importance of the introduction of the Internet and World Wide Web on the 

computing world is well accepted, its role in the client-server architecture is still evolving. Some 

computer industry professionals believe for reasons such as a lack of standards for web 

technology, that the web is not ready to assume a full role in the client-server world [Hayes97]. 

Although the web's potential may still not be fully realized, it can begin to enhance the client- 

server environment in the following areas: 

a. Elimination of client applications development. By using the web browser as the 

universal client, applications developers no longer have to design and deploy client side interface 

software. Virtually all new computers come with browser software and free or inexpensive 

versions for all the major hardware and software platforms are readily available. This eliminates 

the need to design, distribute, and maintain a proprietary user interface. 

b. Familiar client user interface. The rise of Internet use among people today has lead to 

millions of people who have experience in using a web browser as a client interface. Since the 

client interface will be the same one they use to 'surf the Internet at home, they will not only be 

familiar with how to interact with it, but will need little or no training to interface with the server. 

c. Integrated multimedia capability. Web browsers are designed to handle multimedia data 

such as graphics, audio, and video. This capability makes them an ideal client to access data of 

many different varieties from a remote server. 

d. Downloadable compiled code components. Web browsers have the ability to download 

and execute compiled code that is sent over the communication network to the user's browser. 

The executing code appears embedded in the requested web page. This capability allows 

developers to create platform-independent applications that can be sent to a client from a central 

server and can be run on any capable browser. This eases the burden of the developer since only 

one copy of the application is maintained at the source.   Clients will always get the latest version 

2-9 



of the code when they access the Web server and request a page that contains the downloaded 

component. Since the code is only transmitted from the Web server and is actually executed on 

the client machine, it supports the client-side execution philosophy of the client-server model, 

e.   Ease of scalability (client-side). The Web client-server model is easily scaled on the 

client side since the intended new client has only to obtain a network connection and the readily 

available Web browser software. In addition, clients who only want to access the information 

infrequently are not forced to install any additional components, hardware or software, to connect 

to the server than the modem and browser that are most likely already present on their machine. 

The ease at which clients can connect to the Internet and use the Web allows a potentially large 

amount of clients to have access to a server. The number of clients that a server can handle is 

only limited by the server's ability to handle multiple concurrent connections, the available 

network bandwidth, and the speed at which the server can access the requested data. Since 

hardware prices have been steadily decreasing, it has become easier and cheaper to add capability 

to the server to handle more clients and access the data fast and efficiently. However, at this time 

the relative cost of network connectivity has not decreased at the rate of hardware and can be 

therefore affect the ability of a system to scale up as a large number of new clients are introduced. 

While these factors exemplify some benefits of the web in the client-server model, 

several potential pitfalls associated with using the web in this fashion to access databases must 

also be considered. 

2.6     Potential difficulties in introducing the web to the client-server environment. 

The difficulties in providing web access to existing relational databases fall into three 

categories: deciding among competing standards, the statelessness if the web, and dealing with 

legacy middleware. 

2-10 



2.6.1     Choosing standards to use in implementing Internet access to a database 

Although the HTML document format of the web is a widely accepted standard, no 

single standard exists for handling database access, client side processing, or networking. A 

number of products are put forth by competing companies such as Sun and Microsoft, who 

recognize that wholesale acceptance of their Internet technology could result in large profits. 

Consequently, it is often difficult for the Internet site developer to determine which technologies 

will help integrate their legacy information with the web. This is the problem for which the 

methodology will attempt to provide a framework, in integrating the AFIT/CI system with web 

access to provide more efficient use and broader availability of their data. 

2.6.2     The stateless nature of the web. 

A hallmark of a good database management system, to include distributed databases, is 

its ability to remain in a consistent predictable state. Because the web implements a request- 

response paradigm, it is inherently stateless. A web server maintains no persistent state 

information and handles each request with out any regard to previous access. This lack of 

persistence will concern anyone who wants to provide database access over the web but can not 

compromise on database consistency. 

This statelessness can be overcome through several means. The first is to record state 

information as hidden fields in an HTML page. These hidden fields can contain information that 

is passed to the web server with subsequent HTTP requests [Cornell96]. The second method is 

by using Internet "cookies". Cookies are files that contain state information relative to a web 

server. The cookie is stored on the client's machine and read by the web server every time the 

client accesses a page. The cookie can contain user authentication information, user preferences, 

or other state information [NWG97b]. The third method of maintaining database consistency is 

by having an application embedded in a web page interface with the database directly, or through 

2-11 



a middle-tier application that implements some method of transaction management. 

2.6.3    The web and legacy middleware. 

Many current client-server applications consist of significant amounts of legacy 

applications code. This code may have been developed to bridge heterogeneities in database 

management systems, communications networks, or data representation. When introducing web 

access to the same sources bridged by existing middleware, the developer may need to implement 

bridging functions in the web application also. 

This situation may be complicated by the fact that the middleware applications may be 

written in programming languages no longer in common use. A programmer well versed in C++ 

may have difficulty determining how to implement in their web applications the functions 

contained in legacy COBOL programs. The daunting task of addressing legacy middleware 

applications migration may cause some to forsake a web based access scheme altogether, or at 

least approach it with considerable reservation. However, the difficult task of implementing 

middleware functions is made easier by the inherent ability of the web to bridge many network, 

software and hardware differences. 

2.7     Software Technologies for Web-Database Integration 

Having shown how the introduction of the World Wide Web and Internet can enhance the 

client-server model, the focus now shifts to the software technologies that make those 

enhancements possible. Applications developed using these technologies fit into two categories 

with respect to the client-server model. The two categories contain technologies used to create 

code designed to run on the client (client-side) and code designed to run on the server (server- 

side), respectively. Within each category, sub-categories further differentiate between the 

technologies. This section discusses each category, the technologies that constitute them, and 

some key associated pros and cons of each. Additionally the most common database access and 

2-12 



communication techniques of Internet software technologies are also discussed. 

2.7.1     Client-side technologies 

Client-side technologies create code that will be executed within the client's web browser. 

These technologies lighten the workload of the server by performing some or all processing tasks 

on the client's machine. The two main types of client-side processing technologies in this 

category are scripting languages and downloaded compiled components. 

2.7.1.1     Client-side Scripting languages 

Scripting is the embedding of program code in text form, called scripts, within a web 

page. Scripts are written using one of several scripting languages that are typically a loosely 

typed subset of a more computationally complete programming language [JavaScript97]. A 

script is downloaded as text along with the HTML page that contains it. The script is then 

interpreted and executed in any client web browser that supports scripting. 

Scripts were designed to interact with both web pages and the client's browser software. 

Consequently, they are commonly used both to customize web pages based on the client's 

browser version and to facilitate interaction with the user in an otherwise static page2. For 

example, a script may be used to validate user inputs before sending them to the server for 

processing.. Additionally, scripts can interact with compiled code components, such as Java 

applets (section 2.7.1.3), that exists on the same web page. Figure 6 shows an HTML document 

containing an embedded script and Figure 7 shows the results of the script's execution in the 

client's web browser. 

Often by having an image change appearance when the mouse moves over it. 

2-13 



<HTML> 
<HEAD> 
<TITLE>JavaScript Sample</TITLE> 

<SCRIPT LANGUAGESJavaScript"> 
<!—HIDE 
function sayHi(fieldl, field2) { 

var name = fieldl.value 
var age  = field2.value 

if ((name 

} 

"") || {age == "")) { 
alert("You have not filled out the form correctly! 

JavaScript 
code 

else { 
if (age < 30) alert("Boy " + name + "! You are a youngster!" ) 
else alert("Boy " + name + ", you are old!\n" + "Only " + (60-age) + 
" more years to retirement!") 

} 

//STOP HIDING--> I    HTML 
</SCRiPT> J     input form 

</HEAD> 
<BODY> 
<FORM NAME="theForm"> 
Enter Name Here: <INPUT TYPE="text" NAME = "fieldl" VALl 
Enter Age Here : <INPUT TYPE="text" NAME = "field2" Vj 
<Input TYPE="button" VALUE="Process 
onClick="sayHi (theForm.f ieldl, theForm. f ield2) ">' 
<INPUT TYPE="reset" VALUE="Reset Form"> 

</FORM> 
</BODY> 
</HTML> 

Pushing 
button in the 
form calls the 

script 

><BR> 
><BR> 

Figure 6. JavaScript Code Example 

D;|IÄÄ(gä!rrt#Äfe«oraÄÄiiE#Äfi 

.  ©    0    a ; 
Stqp-,      Refresh      Hon» j 

LJSi*l 

Favottte*    History    Chane«*    FUlscie 

Aj&jt*** \£\ C \My Documents\scfiptdemo.html .il   L*** 
J 

\   Enter Name Here: |Dan                             j 

1   Enter Age Here :|32                                  j 

;     Process j;   ResetFoim    | 

! 

IfJBoi»    .''.'".-;.'-. "-.'- ; •-. .'. -. "   J>MäCOBP*«.- "-';„;; ■ ::■■: 

Figure 7. JavaScript Execution in Client Browser 

2-14 



Some key benefits and limitations of using client-side scripting and a brief description of the 

three most widely used scripting languages are examined below. 

Advantages of scripting. 

Scripts achieve platform independence in a heterogeneous environment by being 

interpreted and executed locally in each client's browser. By interacting with elements of the 

HTML page and the web browser software, a script can add dynamic behavior to an otherwise 

static web page. More importantly, however, because scripts execute in the client's browser, 

script-based processing decreases not only the burden on the server, but also network 

communications between the client and server. 

The reduction of server workload is achieved in part by allowing the scripts on the client 

to do relatively simple computations and processing on user entered data before it is sent to the 

server. Consider, for example, a script being used to validate user input to an HTML form. 

When an HTML form is used to obtain user input, the input is typically transmitted to the server 

for validation. Any data entry errors would then have to be transmitted back to the client with an 

appropriate error message so the client could make corrections for resubmission. By using a 

script to check the input form, network usage can be reduced by checking the data for correctness 

before it is sent to the server for processing. The client will get rapid feedback and the server can 

be assured that any processing that it does will be on valid data [Mueller97]. 

Limitations of client-side scripting 

Scripting languages are not computationally complete. Further, although they implement 

some variation of an object model, they are not object-oriented and so lack support for complex 

2-15 



data types, inheritance and polymorphism [JavaScript97]3. Consequently, they are limited by 

their minimal expressive ability to model real-world entities, and by their relative computational 

weakness as described above. 

Additionally, applications written in a scripting language can not be used to establish 

network connections or database access and therefore must work in conjunction with other 

technologies to accomplish these tasks. Another possible disadvantage of scripts is that by being 

embedded in the HTML page as ASCII text, they are completely visible to the user on demand4. 

As a consequence scripting may not be a desirable choice if the task that the script is to perform 

contains any proprietary or formulas or sensitive information. 

In light of these limitations, any sophisticated client-side processing will require the use 

of more computationally complete languages such as Java. It follows that in a business 

environment scripting will for the present play a supporting role, targeting a specific subset of 

client-side processing tasks. 

Scripting languages 

The three most widely used scripting languages are JavaScript, JScript, and VBScript. 

JavaScript and JScript are almost identical and are both based on the very powerful Java 

programming language [Gesing97]. Microsoft's JScript however does not support some elements 

of JavaScript and introduces others only supported in Microsoft's own web browser [Gesing97]. 

Because of this, an application written using JScript or JavaScript may not be completely 

platform independent. 

VBScript is based on the widely used Microsoft Visual Basic (VB). It is the built-in 

scripting language for many Microsoft products, and thus serves to lower the learning curve for 

developers who are familiar with it. Although it is an interpreted language like the other client- 

3 Object based vs. Object Oriented 
Web browsers allow the user to view the source HTML if desired 

2-16 



side scripting languages, VBScript is an expressively ricer and more computationally complete 

language. However, the main drawback of VBScript is that when used on the client-side, it is 

only supported in Microsoft's web browser and therefore not very portable to non-Microsoft web 

browsers [Mueller97]. 

2.7.1.2    Downloaded compiled components. 

This category of client-side software technologies consists of code that is compiled and 

stored on the server. When referenced in a web page, the compiled code is downloaded to the 

client's computer where it is then executed in their web browser. The code runs in the web 

browser's run-time environment (virtual machine) which has the capability to execute the 

application. The run-time environment can be built in to the browser or implemented via a 

browser software plug-in. For example, Microsoft's Internet Explorer browser includes an 

embedded run-time environment for two basic types of components, applets created using Sun 

Microsystems' Java programming language, and Microsoft ActiveX controls, which can be 

written in a variety of programming languages. Netscape's Communicator, however, needs a 

browser plug-in to handle ActiveX components. 

These compiled component applications are written in computationally complete 

programming languages such as Java, or C++. They achieve platform independence by being 

compiled at the server into an intermediate executable form that lacks any platform specific 

bindings. The web browser of the client, through the run-time environment, provides the binding 

to the client's platform at execution time. The power and portability of these languages make it 

possible for them to be used in a limitless variety of applications. Currently, most applications of 

this type are written to perform complex processing tasks such as animation, database access, 

network communications, graphics processing, etc. Another capability of these types of 

components is that when executing within the browser, the public methods of these components 

can be called from a client-side script executing in the same browser window. The capabilities of 

2-17 



downloaded platform independent code are continuing to evolve in both industry and academia 

through the Network Computer (NC) concept. 

A NC has a fast processor and a large amount of RAM, but no mass storage. When a NC 

user needs an application, it is downloaded from an application server and run in the client's 

computer. When the application is no longer in use on the client machine, it is discarded. While 

this concept will likely become part of mainstream computing in the future, the current cost of 

network connectivity is preventing it from reaching its full potential for large applications. For 

example a fifteen-megabyte application that would download quickly over a 100 MBPS fiber 

optic link, would not achieve satisfactory download times on a typical 10Mbps LAN or 28.8 

KBPS dial-up connection. However, if network technology continues to advance, and 

connectivity costs decrease, the NC will become a viable and cost effective technology for client- 

side use. In the mean time developers should remain concerned with the size and download 

speed of any compiled components [Hamilton96]. 

The remainder of this section discusses the current benefits and limitations of 

downloaded compiled components and the two most widely used types, which are Java applets 

and ActiveX controls. 

Advantages of downloaded complied code 

Unlike the client-side scripts discussed earlier, the languages used to create compiled 

components are much more computationally complete. Their ability to easily implement network 

and database access and process multimedia data make them a robust client-side development 

tool. Additionally, because the code is executed on the client's computer, the reduced processing 

load on the server allows the server to provide the same application to a greater number of clients 

without a significant increase in server-side processing. 

2-18 



Platform independence, central storage of the compiled code, and automatic downloading 

of the components gives the developer the capability to more rapidly create, maintain and 

distribute client-side applications. The client benefits by always receiving a current version of the 

application and the elimination of having to store any applications code locally. These attributes 

of downloaded compiled code provide a previously nonexistent capability to the client-server 

model and makes applications created in this manner well suited for use on the World Wide Web 

and the Internet [Morrison97]. 

Limitations of downloaded compiled code. 

Applications developed as downloaded compiled code will typically be more complex 

and potentially of significantly greater size than static HTML pages or client-side scripts. Also, 

there is no limit on the size of a downloaded code component. However, an applet that takes an 

excessive amount of time to download to the client's machine will not provide adequate response 

time for the user. Additionally because each browser version implements the run-time 

environment for components differently, components may function correctly in some browsers 

and not in others [Mueller97]. The addition of these run-time environments in the browser also 

adds to the complexity and size of the browser software as well. While not typically an issue for 

the developer or most clients, if there is limited disk space on the client's machine, the increased 

browser size may present a problem. 

Because a downloaded component is executed on the client's computer the potential 

exists for the application to inadvertently, or deliberately, harm their system. In light of this, the 

run-time environments implement a varying degree of security constraints on any compiled 

components executing in the browser. For example, the Java run-time environment will initiate a 

security exception if an applet attempts to access the client's hard disk or printer, or tries to 

2-19 



communicate with any machine other than the server [Morrison97]5. Conversely, ActiveX 

controls function as a native application and can therefore completely interact with the client 

machine to include printing and file I/O [Mueller97]6. 

Contemporary compiled component types 

Compiled code designed to download and run in the client's browser comes in two main 

forms. The first is a called an applet. Applets are written using one of several APIs in Sun 

Microsystems' Java programming language, a powerful object-oriented language modeled after 

C++. Some elements of C++, such as pointers and multiple inheritance were omitted from Java 

for simplicity and security. However, through a comprehensive but easy to use set of API's and 

built-in complex data structures, Java simplifies many complex tasks such as database access and 

network communications. Java applets are compiled into machine-independent byte-code that 

can be downloaded automatically and run in any browser that supports a Java run-time 

environment (JRE) [Mueller97]. Although some browsers do not support all elements of the Java 

language, most implement a JRE that supports the majority of the languages functions. This wide 

support for Java in many browsers enhances the portability of any applications written with the 

language. 

The second type of compiled component is an ActiveX control. ActiveX is Microsoft's 

standard application development component technology7. Like Java components, ActiveX 

controls can establish network connections and access databases within native code. ActiveX is 

based on Microsoft's Object Linking and Embedding architecture (OLE) which was designed to 

let windows applications share data. ActiveX controls are compiled at the server into a 

proprietary intermediate form called an OLE Control Extension (OCX) which is executed in the 

5 Some browsers offer the option of turning the security constraints off. Others allow code to be 
authenticated via a certificate before performing potentially unsafe tasks. 
6 This can be seen as a benefit or a risk, depending on the application and the clients. 

2-20 



browser's run-time environment, much like Java byte-code. An OCX file is an extension of a 

Windows Dynamic Link Library (DLL) that has a data transfer capability. This capability allows 

ActiveX controls to communicate with other ActiveX controls and other OLE objects 

[Mueller97]. ActiveX controls can be created using any tool or language compiler that can 

produce an OCX file. Because ActiveX is based on OLE, it benefits from a tight coupling with 

the Microsoft Windows 32-bit operating system. This tight coupling allows the ActiveX control 

to look like a native Windows application and run at native speed [Chappel97]. However, 

ActiveX controls can only run in a browser that has an ActiveX virtual machine (run-time 

environment). Currently only browsers that run on the Microsoft Windows platform have the 

required virtual machine and therefore ActiveX controls are not portable to browsers that run in 

other operating systems [Harmon97].  Another limitation of ActiveX controls is that they must 

be invoked using a scripting language such as JavaScript or VBScript. Java applets on the other 

hand require no use of scripts. 

2.7.2      Server-side technologies 

Server side technologies create code that will be executed on a server. The server can be 

a web server, a database server, or an application server. Applications created in this fashion 

assume tasks that can be done more efficiently or securely on the server than on the client. 

Additionally server-side technologies can create applications for the middle tiers of a multi-tiered 

architecture. The two main types of server-side technologies are stand-alone applications and 

web-server processing. 

2.7.2.1    Stand-alone applications 

Stand-alone applications are independent programs that are run on the server-side of the 

client-server architecture.   They are independent of the web server software and can be written in 

ActiveX components can be used to build both Internet and non-Internet applications 

2-21 



any object-oriented or non-object oriented language supported by the server's hardware platform 

and operating system platform. In a web-based client-server environment, stand-alone 

applications will typically perform middle-tier or back-end functions, such as database access. 

These stand-alone applications will communicate to any client-side applications, other 

stand-alone programs and data sources through one of the communications methods discussed in 

Section 2.7.3. 

Advantages of stand-alone applications 

Stand-alone applications run independently on a server at native operating system speeds, 

and are tightly bound to the platform on which they run. Because they are a running process on 

the server, they do not cause any performance loss due to downloading or start-up as in the case 

of downloaded compiled code that is run on the client's machine.   They can also perform an 

unlimited number of middle-tier or back-end tasks because they can be written in full 

computationally complete programming languages. 

Their computational power allows them to completely interact with the computer on 

which they are executing. They have the maximum allowable access to any system resources 

including file and printer I/O and network communications. This overall tight coupling to the 

system they run on allows them to be optimally tuned for both execution speed and database or 

network access. 

Limitations of stand-alone applications 

With the exception of Java programs, the tight binding of stand-alone applications to their 

system platform negates any application portability.   They must be rewritten and recompiled for 

each different platform. An exception to this includes Java applications which, like applets, are 

compiled into platform independent byte-code that is executed in a run-time environment on the 

server [Morrison97]. Sun Microsystems has developed a Java run-time environment for most 

2-22 



hardware and software platforms. Although the run-time environment adds some overhead in 

binding the byte-code to the run-time platform, the portability of the applications makes it an 

attractive option for developers. Additionally, stand-alone applications do not communicate 

using the HTTP protocol and therefore will have to communicate with the user through another 

component that has that capability8. 

2.7.2.2    Web-server processing 

Web-server processing consists of applications that are either spawned from the web- 

server software as an independent process or executed within the web-server itself. Applications 

that are spawned from the web server can be written in any programming language that can read 

and write to the standard I/O. This interaction through the standard I/O is referred to as the 

Common Gateway Interface, or CGI, which will be discussed later in this section. Applications 

that run in the web-server process can also be written in many programming languages, but unlike 

CGI applications, are treated by the web server software as native code within its main process. 

This eliminates the need to pass inter-process data through the standard I/O, which is much 

slower then passing data within a single process [JavaSoft97c]. 

Web server applications are invoked by the web server in response to a client's HTTP 

request to run that application. Results are returned to the client as an HTTP response containing 

an HTML document (web page). 

HTTP requests sent to a web server contain information about the identity and platform 

of the client. A web server process often uses this information to dynamically provide a web 

page to the client that is customized for them based on the client's request. They also are used to 

receive and process client queries entered through an HTML form. The web server process 

executes the query on the data source and returns the results through the web server to the client. 

The exception to this is an application that implements a web-server. 

2-23 



The remainder of this section describes the advantages and limitations of using web server 

processing and three prevalent forms of this technique. 

Advantages of using web server processing. 

Web server processes not only interface with the client through the web server, but also 

exist as application code running on the server. They can take advantage of both to implement 

several unique functions. They can be used to return HTML documents to the client that are 

generated dynamically based either on the client's HTTP request or the results of some processing 

done on the clients behalf. Because HTML is browser independent, a web server process can 

service virtually any client without concern for compatibility. This is very useful if the developer 

is unsure of what browser version clients use or if cross-platform compatibility is essential. 

Additionally, because the client receives any results as HTML they can be easily saved to disk or 

printed by using the inherent capabilities of the browser software. 

Web server processes also have the ability to parse HTTP requests for information 

regarding the client making the request. The information contained in the HTTP request can 

inform the web server process of who the client is, the vendor and version of the client's web 

browser, and many other characteristics of the client making the request.   A developer can use 

this information to guarantee service to a wider variety of clients by delivering customized 

components. 

The ability to dynamically generate HTML code also allows the developer to service the 

client with current, possibly near real-time, data. This reduces the amount of static web pages 

that have to be written and stored on the web server.   Network communications between the 

client and server are also reduced because the client receives only the information needed instead 

of a static document that might contain large amounts extraneous data. 

By running as an application on the server, like stand-alone applications, web server 

processes can access all file, printing, and network resources of the server. They can use this 

2-24 



capability to perform functions such as establishing network communications to stand alone 

applications, providing database access or logging client transactions to persistent storage for 

security or recovery purposes. Additionally, because all access to the application is through the 

web server, the developer will be assured more data security than with the method of using 

downloaded components. This is because the web server hides the details of any database access 

or processing, and the client is left with the abstraction of merely requesting and receiving HTML 

documents. Additionally, by providing the only access to the applications, the security access 

controls integral to most web servers can now be used to control access to the web server 

processes also. 

Limitations of web server processing 

Web server processes are executed from the web server and therefore every access to the 

application will use one logical connection on the server. If the number of clients concurrently 

using a web server process is large, the web server may become over burdened. These 

connections stay open until any processing is complete and the user is sent a response. If the web 

server application is querying a large database, a connection may be open for quite some time. 

As a result, the client's response time will rise in direct proportion to the number of current 

connections being handled by the web server. 

Independently spawned web server processes also suffer similar performance loss. In 

this case it is due to both the significant context switching needed to start the new process and the 

latency inherent in communication through the standard I/O. Figure 8 shows the cost of 

spawning an independent process compared to one run as part of the web server. 

2-25 



Client 

Application run 
as independent 

process 

Rasults as HTML 

no start-up overhead 
or 

context switching 

Web server 
Process 

Application   |4 

Application running 
within the web server 

£ ►   Database 

Figure 8. Comparison of web server processing techniques 

Web server processes are also limited in their client interface capabilities. A web server 

process is limited to output formats supported by the web server and thus can only return an 

HTTP response containing a web page. Consequently, they can not directly interface with any 

client-side compiled code or script. 

Current implementations of web server processing 

This section discusses three of the most widely used implementations of web server 

processing, CGI applications, Java servlets, and Microsoft ActiveX Server Pages (ASP). 

CGI does not refer to a particular language. Instead it is a class of program or script that 

can be invoked by and provide results to a web server. Currently, the most common language to 

implement a CGI application is Perl, but as stated previously, a CGI application can be written in 

virtually any programming language [NCSA97]. CGI applications are widely used to produce 

dynamic HTML pages based on the client's input. This input is usually entered into an HTML 

form. CGI has been widely used because most web servers include support for it; until 1997, it 

2-26 



was the only available technique for web server processing9. Because CGI applications are 

spawned as a separate process, they suffer from the processing overhead costs discussed above. 

There have been two advances in the area of CGI which have eliminated some of its 

associated overhead. The first is the use of Microsoft Internet Server API (IS API). IS API is a 

Windows API for writing server-side extensions to a Windows-based web server. It allows CGI 

applications to be compiled into a dynamic-link library (DLL) which is allowed to run within the 

web server process. The drawback to ISAPI, however, is that the code contained in the DLL file 

must be written in C++, and ISAPI only works on the Windows 32-bit architecture [Perl97]. This 

makes ISAPI applications not portable to non-Windows servers. The second advance is called 

'Fast CGI'. Fast CGI improves CGI performance by spawning a single process for all requests 

instead of one per request. This reduces the start-up and context switching overhead normally 

associated with CGI. 

The second major implementation of web server processing is the use of Java servlets. 

Servlets are compiled Java programs that use the Java Servlet API to interface directly with the 

web server to provide the same functionality as a CGI application [JavaSoft97c]. Because a 

servlet is run within the web server process, it does not suffer the context switching and I/O costs 

of standard CGI. Servlets are designed primarily to run in a Java-enabled web server, but Sun 

also provides software patches that allow servlets to run, similar to ISAPI, in non-Java web 

servers. The inherent computational power of Java, its useful APIs for networking and database 

access, and its inherent portability make servlets an enticing option for developing applications 

involving web server processing [JavaSoft97c]. 

The last implementation of web server processing to be discussed is ActiveX Server 

Pages (ASP). Microsoft created ActiveX Server Pages as the integral server processing 

component of their web server called Internet Information Server (IIS)[Microsoft97a]. Although 

9 In 1997 Sun introduced Java servlets [JavaSoft97c] and Microsoft introduced ActiveX Server 
Pages [Microsoft97a] 

2-27 



IIS also supports traditional CGI through the standard I/O, ASP applications, like servlets, run 

within the web server process to maximize performance and minimize client response time. 

ActiveX Server Pages can be written in VBScript and JScript and plug-in extensions provide 

support for two other popular scripting languages, REXX and Perl [Microsoft97a]. ActiveX 

Server Pages can also invoke compiled server objects to perform complex tasks such as database 

access and email transfers. If the enterprise providing web access to databases is committed to 

using Microsoft products for back-end services, ASP will be a strong option to provide services to 

the front-end clients. 

2.7.3    Web component communication techniques 

Having now covered the main technologies that can be used to create web applications, 

the techniques available to allow these distributed applications to communicate will now be 

briefly discussed. The distributed nature of web applications requires them to have the capability 

to interact with other applications in order to accomplish some overall task. These mechanisms 

or techniques use the Transmission Control Protocol / Internet Protocol (TCP/IP) as their basis for 

inter application communications. This is primarily due to the use of TCP/IP as the 

internetworking communications protocol of the Internet and World Wide Web. The techniques 

to be discussed include the use of TCP/IP sockets, Sun Microsystems' Remote Method Invocation 

(RMI), Microsoft's Distributed Component Object Model (DCOM), and the Common Object 

Request Broker Architecture (CORBA). 

2.7.3.1    TCP/IP Sockets 

The use of TCP/IP sockets is the lowest level of communications available to the web 

programmer. TCP/IP connections make use of an Internet Protocol address (IP address) and a 

logical port number. The IP address is a unique address assigned to an individual computer. The 

2-28 



port number is logically assigned by the network operating system of that computer to identify 

individual applications or processes that require the use of the network connection. The use of 

logical ports allows more than one application to share a single network connection. This 

addressing scheme can be thought of in terms of a large office telephone system. The IP address 

represents the main telephone number of a company and the port an extension for a specific 

employee. 

Within a computer, a TCP/IP socket is established on a unique IP address - port 

combination. An application can create two types of sockets, inbound sockets and outbound 

sockets. Applications create inbound sockets to listen on a particular port for requests to 

communicate from other applications. Outbound sockets are used by an application to call other 

applications that are listening for connection requests. Therefore, if an application wants to both 

originate and receive connections, it must implement both types of sockets. In order to create a 

connection to an application's inbound socket, the calling application must know the IP address 

(or host name10) of the destination and the port on which it is listening. 

A connection request contains the IP address and port number of the destination and the 

IP address and outbound port number of the sender. This gives the destination the necessary 

information to complete the full-duplex connection between applications that allows it to transmit 

data back to the sender. Once the connection is established, the two applications can exchange 

data over a mutually agreed upon protocol implemented in both applications [Saadawi94]. While 

the other technologies discussed in this section use sockets as their underlying communications 

technique, unlike sockets, they all have a well-defined protocol to exchange data. This provides 

the programmer a level of abstraction above specific details of establishing the connection. 

Name server processes can map the host name of a computer, i.e. "www.nobodv.com". to an 
IP address. 

2-29 



Advantages of using sockets 

While sockets provide the lowest level of abstraction from communications details, they 

can be implemented in most Internet software technologies.   Because most high level 

programming languages support the use of sockets, they can be implemented in downloaded 

compiled code components, stand-alone applications, and web server applications. This cross 

platform compatibility creates a common method in which to interconnect applications created in 

different technologies that may not support any higher-level means of communication. For 

example there is no high level protocol allowing a stand-alone application written in Fortran, 

running on a Unix computer, to communicate with a Java applet running on an MS Windows PC. 

Any communications between the two can however be achieved via a socket connection. 

Limitations of using sockets 

The low level of abstraction provided by using sockets means that the programmer must 

not only be aware of specific details regarding a network connection, but also must implement all 

of the aspects of the connection in the application being written. For example, when using 

sockets to communicate between applications, the programmer must manage the creation, 

destruction and monitoring of all sockets required by their application. Also, because a computer 

may have many processes that require use of the network ports, the programmer must 

additionally ensure that no conflict over port usage arises within competing applications. 

Additionally, the programmer must also develop and implement the protocol to marshal 

data between the source and destination computers. Because different programmers may write 

the source and destination applications, an ill-defined or improperly implemented protocol could 

lead to communications errors from protocol mismatch. 

Although using sockets may be the only way to connect applications of different types, 

the requirement of managing all aspects of a connection will increase to the complexity of any 

design using it to communicate. 

2-30 



2.7.3.2    Remote Method Invocation. 

Remote Method Invocation (RMI) is a Java programming language API designed to 

allow Java applications to invoke operations on remote (distributed) objects also written in Java. 

It is the native remote-object management tool of Java that allows programmers to create 

distributed Java-to-Java applications [JavaSoft97b]. Using RMI the methods of remote objects 

can be invoked from another Java application on the same computer or over a network. In effect, 

it is similar to a C++ remote procedure call. RMI uses a technique called object serialization to 

marshal and un-marshal method parameters to and from the remote object. Serialization allows 

objects to be passed in their original form across a data stream (socket connection). 

While RMI uses sockets to create connections, the level of abstraction it provides, it 

removes the programmer from having to know the specific details of any connections. The 

programmer creates a remote interface to any remote objects. He then registers those objects with 

a registry that is run on the computer owning the object.   This process makes the method 

available to remote clients allowing them to reference and invoke it the same as a native method. 

The need for complicated data exchange protocols is eliminated because the exchange is now 

done through parameter passing between the application and the remote method [JavaSoft97b]. 

Advantages of RMI 

RMFs strength lies in the fact that it is an extension of the core Java language and as such 

will be easier and more intuitive to implement, between communicating Java applications 

[Curtis97].   Also RMI is a less complex because it uses one language (Java) for both the object 

and interface definition. 

The chief advantages of using RMI are that method parameters are serialized to the 

remote object and the details of the connection are taken care of for the programmer. Therefore 

no network sockets or protocols need to be set up by the client to invoke the remote method on a 

2-31 



server.   Additionally because RMI uses the Java language, its use within a Java application is 

simpler that that of DCOM or CORBA which may have one language for the interface and 

another for the application. 

Limitations of RMI 

There are several drawbacks to RMI. The first is that RMI is a Java-only API and 

therefore can only be used to interconnect two applications written in Java as stated earlier. 

Also, by not providing directory or other services, RMI provides less power and functionality 

than CORBA, which provides these services and more. Because Java applications must also run 

in a virtual machine, applications that use RMI may have worse performance than similar 

CORBA or DCOM applications [Morgan97]. 

Additionally, portability of RMI applications to Microsoft Internet Explorer clients is 

limited, if possible, because the only web browsers currently supporting RMI are Sun's HotJava 

and Netscape's Communicator." 

2.7.3.3    Distributed Component Object Model 

Microsoft's Distributed Component Object Model, or DCOM, provides a standard binary 

interface in which distributed objects, written in any language, can make remote procedure calls 

to other similar objects. DCOM allows distributed objects including ActiveX controls to 

communicate, and to be logically combined to create larger applications. DCOM objects 

communicate through remote procedure calls over TCP/IP sockets. DCOM is language 

independent, and although an object can be written in any language, Microsoft's Object 

Description Language (ODL) is used to define the interface to an object [Morgan97]. 

Unlike RMI, which is a top-down design, DCOM was built from the bottom up, not as a 

new technology, but rather an extension of Microsoft's existing Component Object Model 

11 Microsoft has stated that they will not support RMI because they believe DCOM is better. 

2-32 



(COM). COM, in turn, is based on Microsoft's Object Linking and Embedding (OLE) 

technology. Although DCOM implementations are being ported to other platforms for future 

release, DCOM is currently an option for the Windows 32-bit environment only [Morgan97]. 

Advantages of DCOM 

The most noticeable advantage of the DCOM model is its tight integration with a WIN 32 

operating system, such as Windows NT or Windows 95. This gives an application written using 

the DCOM model a more native look and functionality when used in a Windows environment. 

As discussed previously, this allows an application using DCOM (ActiveX control) to function as 

native code. DCOM objects can have access to all native functions such as printing, memory, 

and file 10.   DCOM is and will continue to be an integral part of Microsoft's Win32 architecture 

and therefore important to anyone creating ActiveX controls or server-side applications for a 

Windows platform. 

Limitations of DCOM 

DCOM's greatest drawback is its limited platform support. By extension, since object 

interfaces are defined in a proprietary language, ODL, applications using DCOM and DCOM 

objects not very portable, either. 

Another criticisms and possible disadvantage of applications using DCOM is that DCOM 

applications (ActiveX controls) have access to native operating system functions, such as file 10 

and memory. Their added power comes with the greater potential security threat of allowing 

remote code to interact with the system at that level. Hostile DCOM objects could easily snoop 

around in a client's PC, insert or delete files, corrupt system memory, or otherwise behave 

maliciously [Mueller97]. 

2-33 



2.7.3.4    The Common Object Request Broker Architecture 

The Common Object Request Broker Architecture, or CORBA, is neither a software 

package, nor a programming language, but an inter-object communications standard developed 

by the Object Management Group (OMG)12 [OMG97a]. CORBA is designed to allow 

applications to communicate with one another regardless of the language in which they are 

written, or the software and hardware platform on which they exist. This communication is 

facilitated through an Object Request Broker (ORB). 

CORBA is defined by the OMG as: 

..the middleware that establishes the client/server relationships between objects. Using an ORB, a client can 
transparently invoke a method on a server object, which can be on the same machine or across a network. 
The ORB intercepts the call and is responsible for finding an object that can implement the request, pass it 
the parameters, invoke its method, and return the results. The client does not have to be aware of where the 
object is located, its programming language, its operating system, or any other system aspects that are not 
part of an object's interface. In so doing, the ORB provides interoperability between applications on 
different machines in heterogeneous distributed environments and seamlessly interconnects multiple object 
systems [OMG97a]. 

Figure 9 shows how a client object can use the ORB to invoke the methods of a remote 

object registered with an ORB [Acker97]. In addition to an ORB, directory and other services, 

CORBA also provides an interface definition language (BDL) to define an object's interface. 

This object invokes 
methods on remote 
objects that appear 
be locaL 

The ORB brokers the 
invocations to the 
appropriate remote 
object 

These objects are the 
: implementations that 
! offer services via 

their interface 
methods. 

Figure 9. Invoking a method on a remote object via an ORB. 

12 The OMG home page is www.omg.org 

2-34 



Advantages ofCORBA 

The greatest advantage of CORBA is that it promotes a standardized object interface 

language, and a platform-independent way to access and use distributed objects (methods). These 

features make CORBA a portable, flexible, and scaleable architecture to use in implementing a 

distributed system. 

Disadvantages 

While the CORBA standard is not new, it has not been wholly embraced even by some 

OMG corporate members such as Sun Microsystems or Microsoft [OMG97b]. The appearance of 

Sun's RMI and Microsoft's DCOM model show that major software developers are not quite 

ready to use CORBA for their native remote object communications. Further, even existing 

CORBA-based products differ in their level of CORBA compliance [Orfali97]. 

CORBA applications are also quite complex and often require additional code libraries to 

operate. While this might not be a problem for computers with adequate processing and network 

connection resources, downloading a large CORBA application as an applet or ActiveX control 

might be unacceptable to a web client. The results in [Acker97] provide a clear example, where 

download times increased significantly for CORBA implementation over non-CORBA 

implementations. 

The complexity, lack of wholesale acceptance, and dubious standardization enforcement 

of CORBA is causing some enterprises carefully consider any use of CORBA, if at all. Pountan 

and Montgomery, in their article titled Web Components cite the time it took CORBA to become 

a workable standard, and it's complexity as the main reason most developers are settling for a less 

complex solution based on ActiveX or Java [Pountan97]. 

The current complexity of CORBA will most likely ensure that it remains in the domain 

of large corporate servers for the near term. However, the fact that Netscape has included ORB 

features in its latest browser is very promising for even small-scale developers. If more browsers 

2-35 



include the capability to use ORB services, the need to download large libraries of code to handle 

those features will be eliminated in applets and ActiveX controls. This will be a major step in 

helping CORBA reach its full potential as a true cross-platform solution [Baker97]. 

2.7.4    Database access techniques. 

What makes the Internet software technologies discussed in this section more than just a 

means to liven up a static web page is their ability to interact with relational database 

management systems. Web-based data access can be achieved through several methods. While 

some methods may be supported in several technologies, most are only supported in one 

technology. No method is necessarily better or worst than any other, however, the developer's 

choice to use a particular technology to implement components may require the use of a 

particular method of database access also. This section will discuss the use of embedded SQL, 

Sun Microsystems' JDBC API, and Microsoft's ActiveX Data Objects (ADO). 

Embedded SQL 

For years developers have had the ability to embed database access functions in software 

applications. Many software compilers can be purchased with pre-compilers that allow a 

software developer to include database access code (SQL), which is declarative, within a 

procedural language such as Pascal, C, or Ada. The developer could then invoke the compiled 

code from a web page as a CGI application. While this technique is more complicated than the 

others to be discussed, if the back-end platform (server) does no support other methods of 

database access, this may be the only option available to the developer. Figure 10 shows a small 

example of SQL commands embedded in Ada source code. 

2-36 



Procedure ada_db_access is 

Item : string(1..10); Cost : float; 

-- Declare the cursor to read the table 
EXEC SQL DECLARE test_Cursor CURSOR FOR 

SELECT ITEM_NAME, COST FROM TEST_DB WHERE COST = 
29.00; 

begin 

-- Logon 
EXEC SQL CONNECT : "user/password"; 

— Execute the SELECT 
EXEC SQL OPEN test_Cursor; 

— This is the FETCH loop 

PUT_LINE("ITEM      COST"); 
PUT_LINE("   -- 

FETCH_LOOP: loop 

-"); New_Line; 

BEGIN 
EXEC SQL FETCH  test_Cursor INTO :Item, :Cost; 
PUT(Item); Put("     "); Put(Cost); New_Line(); 

END; 
END LOOP FETCH_LOOP; 

-- Disable cursor 
EXEC SQL CLOSE test_Cursor 

-- commit changes 
EXEC SQL COMMIT RELEASE; 

Figure 10. Embedded SQL example 

Java Database Connectivity (JDBC) 

JDBC is a database access API, developed by Sun Microsystems Inc, that allows Java 

programs, both applets and applications, to access relational databases [JavaSoft97a]. JDBC 

allows an application to interface with a relational database through a separate software driver 

that provides the link between JDBC and that particular database management system. Sun 

provides a driver to link JDBC with databases that support Microsoft's Open Database 

Connectivity protocol (ODBC) with the standard Java package [Microsoft97b]. This driver gives 

2-37 



a developer the ability to access the many database products that have an ODBC interface. Other 

database management vendors are responsible for the development of any drivers to access their 

product directly or on non-Microsoft platforms [JavaSoft97a]. 

Unlike embedded SQL programs, applications that use JDBC are completely procedural 

and contain no declarative SQL commands. SQL queries are sent as a parameter to a method 

call. The method then executes the query and returns a result set or any applicable error 

messages. Because it is implemented in Java, JDBC can be used on the server-side within stand- 

alone applications or web server processes, and can also be used in downloaded client-side 

applets. The only limitation of JDBC is that it is a Java-only API. 

Active Data Objects (ADO) 

Active Data Objects are compiled database interface applications residing on a Microsoft 

Windows platform that can be invoked by stand-alone applications and ActiveX Server Pages 

(web server process) [Microsoft97a]. ADO provides the same database access capabilities as 

JDBC. However, ADO will interface only with a database that can be accessed via Microsoft's 

ODBC protocol. While this includes a number of popular and powerful databases, the 

requirement to interface through ODBC limits ADO's use to Windows platforms. Applications 

written to use ADO are written in programming languages that support the Microsoft platform 

such as Visual C++, or Visual Basic. Because ActiveX Server Pages are also tied to the 

Microsoft platform, the use of ADO in web server processes is similarly limited to Windows 

platforms. 

The main benefit of ADO is for developers who will use Microsoft products to perform 

back-end processing (database and web-server). The tight integration of ADO to the Microsoft 

architecture makes it very easy and reliable to access relational data using this method. 

2-38 



2.7.5     Summary 

This chapter presents an overview of the client-server model with a focus on how the 

introduction of the Internet and Web has changed the client-server model's fundamental character. 

Additionally the primary Internet software technologies (summarized in Table 1) that are 

responsible for that change have been discussed at length as well. Table 2 summarizes and 

compares the inter-application communications technologies that were discussed in the latter part 

of the chapter. These comparisons will be used in Chapter 3, which describes a methodology to 

apply these techniques to provide a web interface to existing databases. 

Table 1. Web Technology Features 
Function Technologies Source Web Servers Browser Platform HTML I/O Language            1      Processing 

Client Side 
Scripting 

JavaScript Microsoft 

^^^^^ 

Major1J Yes" Java based Client Side 

JScript Netscape Major'0 Yes" Java based Client Side 

VBScript Microsoft Microsoft Yes" Visual Basic Client Side 

Downloaded 
Complied 
Components 

Java Sun Major No Java Client Side 

ActiveX Microsoft Major No Any language and tool that 
can produce an OCX file 

Client Side 

Server Side 
Processing 

Java Servlet Sun All Yes Java Server Side 

ActiveX Server 
Paqes 

Microsoft Microsoft IIS Yes Any Server Side 

CGI Various All Yes Any Server Side 

All =s Should work on current versions  Major = Should work on widely used browser versions to 
of all known browsers or servers include at least but not timited to Internet Explorer and 

Communicator. 

Table 2. Comparison of Inter-Application Communication Techniques15 

Technology 

Object 
Definition 
Language 

Interface 
Definition 
Language 

Connection 
Abstraction 

Level* 
OS Platform 

Support* 
Ease of 

Configuration* 
Multi-lingual 

Object Invocations* Scalability* Security* 
CORBA Any CORBA IDL 4 4 3 4 4 4 
RMI Java Java 4 4 3 0 1 3 
DCOM Any ODL 4 2 0 3 1 4 
Sockets Any Custom 1 4 1 4 4 3 

None     Few    Some     Good     Excellent 
0 12 3 4 

Some JScript functions only work in Microsoft Browsers and some JavaScript functions will 
not work in Microsoft Internet Explorer [Gessing97] 

Ability to manipulate web page on the client side (forms processing, etc) 
15 Based on table in [Orfali97] page 333 

2-39 



(this page intentionally blank) 



3     Methodology for providing web-based database access 

This chapter presents a methodology for determining which Internet technologies to use 

in providing web-based access to existing relational data sources. The goal is to assist the 

developer in determining the right technologies, or mix of technologies, to accomplish the goals 

of their database access project. 

By focusing on three essential factors affecting the design process and the capabilities of 

each Internet technology, a framework in which to narrow the large number of technology 

choices to a more manageable size is provided. As a result, the developer can then focus 

attention on the design rather than the nuances of the technologies themselves. 

3.1 Methodology steps. 

This methodology to aid the designer of a web-based access project consists of several 

steps. Each step and sub-step will be discussed in the sections as indicated in (). 

• Development Environment Analysis (3.2) 
- Client Environment (3.2.1) 
- Existing Data Source Architecture (3.2.2) 
- Existing Resource Environment (3.2.3) 

• Component Analysis and Design (3.3) 
- Functional Analysis Overview (3.3.1) 
- Component Functional Decomposition (3.3.2) 

• Function Implementation (3.4) 
- Component Interface Definition (3.4.1) 
- Implementing Sub-components (3.4.2) 

3.2 Development Environment Analysis 

The first step in the methodology is to a analyze how certain aspects of the overall system 

environment can impact or influence the technologies chosen for implementing data access. The 

environment to be studied consists of the clients who will access the data sources, the existing 

database architecture, and the availability of development and maintenance resources (Figure 11). 

3-1 



Client 
Environment 

Individual Components 
of 

Web-based Data Access 

< > 
Existing 
Resource 

Environment 

Existing 
Data Source 
Architecture 

Figure 11. Factors influencing component development 

With these in mind, the overall project is defined as a group of individual components, 

each providing a unique function.   Each component, comprising the overall project, can then be 

modeled, designed, and implemented individually. 

3.2.1     Client Environment 

When implementing web-based access to databases, perhaps the most critical 

aspect of the design process is a thorough analysis of the clients that will interface with any 

components created. 

There are two classes of clients in a typical web-based access scheme. The first consists 

of internal clients who are members of the organization owning the data sources. The second, 

external clients, are those clients who exist outside the organization, but who have a need to 

access the data. The major difference between the two will be in which functions (components) 

of the system are accessible to them and their network connectivity (Figure 12). 

3-2 



m 
H 1\ 

m LANJ 

fp S fljiwwiftjijfy 

B 
n ̂r'i-'ijSS? 

Data Access Functions 

Figure 12. Client Environment 

3.2.1.1    Internal clients. 

In general, a developer will know the number of potential internal clients and the 

hardware and software platforms they use. He can therefore exercise greater flexibility in 

choosing implementation technologies that favor performance and integration over portability. 

As an example, consider a situation where internal clients use only the Microsoft Internet 

Explorer browser in the Windows 95 operating system and the server runs the Microsoft 

BackOffice server suite. The designer may choose to implement components for internal access 

using ActiveX controls that are designed to support Microsoft platforms. This will create a 

component that is tightly coupled with not only the server side of the system, but the client side 

also.   The benefit of this tight coupling is increased component capability and better run-time 

performance since the component and client platforms were designed to work together efficiently. 

Another positive aspect of the internal clients is that they are most likely to have a high- 

speed connection to the server, since they will commonly be on the same network or LAN. The 

developer need not be as concerned with the communications download speed of these clients as 

with external clients. More powerful components such as ActiveX controls and Java applets, that 

due to their potential size might not be desirable to use for external clients, can therefore be used 

3-3 



with greater frequency. 

3.2.1.2    External clients 

While much is known about the internal clients, the opposite can be said about external 

clients. Occasionally, the developer may know the number of external users who will interface 

with a function if it is designed for a number of approved clients. However, if the goal of the 

function is to achieve the widest access to the data resource then the number of potential clients 

can be unlimited and therefore much harder to predict. 

The developer should plan for the worst case, that the latter is true, and he can only 

estimate the potential size of the external client base. The number of external clients can have a 

great impact on a web server's performance. This is because as the number of concurrently 

connected clients increases the server's processing load and can cause it to get overburdened if it 

is not of sufficient processing power. Also since a server typically has only one network 

connection, which must be shared by the data of all the clients, response times can be affected by 

a communications bandwidth bottleneck. The developer must take care to weigh the potential 

impact of an increased client load on the scalability of the system by assessing its effect on 

network bandwidth and server performance. 

Two other areas of concern when developing functions for external clients is the software 

and hardware platform on which they operate. Since there are web browsers for almost every 

major operating system and hardware combination, and the number of clients using these 

platforms is largely unknown, the designer must always consider portability when designing 

components to be accessed externally. The impact of the choice to use a proprietary technology 

could cause unpredictable results. Some clients may experience no degradation in component 

functionality, others may get limited functionality, and some can have a total loss of functionality 

[Meuller97]. For example, consider an applet created in the Java programming language version 

1.1 .x.   A client using Sun's HotJava browser will see the component exactly as the designer had 

3-4 



intended. A Microsoft Internet Explorer client may see the component, but GUI buttons or input 

form tabbing may not work correctly. In the worst case, the user won't see the component at all 

and therefore will not be able to use it. 

Additionally, some functions that are supported on different browsers appear differently 

on each vendor's version, affecting the user interface to that function. For example, if JavaScript 

is used within a web page to show a help message for controls as the mouse passes over the 

control, it may appear over the item in some browsers and in the status bar in others. Figure 13 

depicts a web page in which the designer has imbedded JavaScript code. It is evident that some 

unknown element of the code was unsupported in the browser, causing an error message to 

appear for the client. 

SM •«HE 
!j gfe   ft*   J§ew FaVOHfMt   "fi«lp 

If 
■tl ©    m    a 

Stop      R*«sfcf    Hows 
Q    m. 

Seat*    Favorite* 
a    ©    m 

Fuhcieen      Mali Pml liii 
; I A4&ft*s JJO h^://www.perscom.afmy.mil/opmd/$ignal/4mai.htm ~B<n*k*\ 

Major Assignments 

Desk 

Internet Explore* Sefti>l;£«i#ä 

/f\   Afiöroihasocounedhthesaiptontepaije. 

üne 11 
Cha>: 1 

En«: Object expected 
Code. 0 

,Dt>joM*»»ilt« contnue turträig sciipttfltttteisag«? 

"•1 Done ""   " " j 

Figure 13. JavaScript Error in Client Browser 

3-5 



Another example of browser incompatibility is the way browsers display color. A 

developer may create and test a component on a machine that can display in a high resolution 

(SVGA) with 16 million colors, while a client is reading the page on a machine that is configured 

to support a lower resolution (VGA). The client's browser will pick the closest available color in 

its palette, which may not appear to the client as intended by the page developer. 

Developers must also consider the external client's network connectivity when designing 

components to the system. The external client's connectivity could range from a direct Tl 

connection of 1.54 MBPS to a dial-up modem connection of 9.6 KBPS. Consideration must be 

taken for the client's connectivity in designing each component that will be available externally. 

For example, a developer implementing a function with a web page containing an applet, must 

take care not to make the applet so big that it results in a perceptibly unreasonable download time 

[Morrison97]. The performance loss due to long downloads is reduced, in some cases, if the web 

browser allows the downloaded components to be stored on the client's computer. Future 

execution of a stored component will use the local copy (if it is the most recent) instead of 

downloading it again. Presently, Java applets are downloaded with every access to the page and 

there is no persistence of the code on the client machine16. 

When designing a component, a reasonable analysis should be made of its download 

performance. Setting up a computer with a modem to estimate the worst-case access speed for 

external clients is one way to do this.   Because a communications bottleneck can occur anywhere 

in the client-server link, the developer must also consider the server's bandwidth to the Internet 

when deciding on a technology for implementing functions for external clients. 

To summarize, complete information about external clients is unknown and cannot be 

known with any certainty. Therefore, the components that they interface with should be designed 

for portability and of a sufficient size to optimize download performance.   While the developer 

can not always plan for every external client situation, he should strive for a design that will work 

3-6 



for the most critical or largest possible set of external clients. 

3.2.1.3    Overall Impact of the Client Environment 

Clearly both the internal and external client platform characteristics will have an 

enormous impact on the design process. Since the whole purpose of the process is to service 

clients, this is understandably the most critical of the three environment factors discussed in this 

section. As long as software developers continue to develop browsers that support proprietary 

standards, the incompatibilities discussed will continue to exist. Because of this developers and 

systems designers must constantly consider the state of the client environment during the design 

phase of any web-based data access system to ensure that the requirements of the client are met. 

3.2.2     Analysis of the Existing Data Source Architecture 

The second area to be considered when picking technologies for web-based database 

access component designs is the existing database architecture itself. This includes any existing 

database management systems, their ability to handle an increased client load, and the physical 

location of the data sources. 

3.2.2.1    Existing Database Management Systems. 

An important aspect to consider when developing web-based database access components 

is the current architecture of the database(s) that will service the web clients. Two key areas of 

the existing DBMSs are of primary focus. The first is the multi-user capability of the existing 

database management software. The second is the existence of any original equipment 

manufacturer (OEM) or third party development tools (e.g., Oracle Designer 2000) for any 

DBMS that will be accessed. Each of these areas are discussed in detail below. 

The ability of a DBMS to service remote web clients will depend greatly on whether it 

implements a single or multi-user environment. Since web clients accessing a database through 

Most browsers will load a recently accessed page from cache to save time when possible. 

3-7 



most interfaces are treated the same as local clients by most DBMSs, the developer can predict 

how the existing DBMS software will respond to an increased client load. For example, adding a 

sizable amount of web clients to a DBMS that was designed to be single user, or that can only 

handle a small number of concurrent users, will adversely affect both local and web user's access 

and performance. Additionally, many single-user DBMS's consider the database to be in use 

(locked) while a web connection is in progress. This can, at best, limit additional clients to read- 

only access, and at worst deny service altogether. Other DBMS's will exhibit severe performance 

degradation when accessed simultaneously by a large number of clients. For example, when 

connecting through an ODBC interface to a Microsoft Access database, the ODBC software 

actually opens the database as if it were being loaded locally from the full MS Access system. 

This will at best limit other users to read-only concurrent access of the same data source. 

With the connection capabilities of the database in mind, the developer should not create 

an access demand that the DBMS was not designed to handle. If that is not possible the 

developer should upgrade the DBMS to a system that can serve not only the local users of the 

data, but a large volume of web clients also. 

Another area that will influence any design is the possible existence of OEM or third 

party development tools. The more prevalent and popular a DBMS is, the more likely it is that 

such tools exist. Many current relational DBMSs offer integrated web front-end development 

tools. These tools allow the rapid graphical design of web forms, reports and ad-hoc queries. 

These tools can also automatically generate the code necessary to compile these applications. 

This generated code is often in the form of a Java applet or other client-side component 

technology. 

The major benefit of these development tools is their tight coupling with the target data 

source. The ease of use gives the developer the ability to rapidly create components to access 

their database. The tight coupling between the code created by the tool and the DBMS ensures 

that the web-components will likely be more functional, and have fewer bugs. Many of these 

3-8 



tools are also self-documenting, greatly enhancing maintainability of the code. 

A negative aspect of these tools, however, is that they can often be prohibitively 

expensive if not bundled with the database system. Some tools also require the use of software 

plug-in code, installed in the client's browser, to access the database. This further complicates the 

issue of client portability in two ways. First, it introduces not only the requirement to have 

versions of the plug-in for several browsers, but also potential difficulties that can occur when the 

client attempts to install the plug-in in their browser. Secondly, others may implement front-end 

functions in a technology that is not supported in all web browser versions creating 

incompatibility between clients and the server. 

The third issue is the available methods of access. Some databases can only be accessed 

via the web through a proprietary interface. This will limit a design to the methods supported by 

that database management system, while other DBMS systems have multiple access methods that 

make them an easier and more appealing option. Many DBMS systems such as Microsoft Access 

can communicate with clients through a number of means such as a JDBC-ODBC [JavaSoft97a] 

bridge or through Microsoft's DCOM [Mueller97]. Many database vendors are developing JDBC 

and ODBC drivers for their database systems also [JavaSoft97a]. In general, the more methods 

of connection available to the developer, the more flexibility he has in choosing a technology to 

use in implementing a specific component. 

After the client environment, the existing database architecture is the next most important 

factor to consider when designing web-based database access components. The developer must 

be aware of the capabilities of the DBMS and how it will scale-up with additional clients in order 

to keep from overloading the DBMS with additional connections. 

3.2.2.2    Location of Data Sources 

The second area of the existing DBMS architecture that deserves consideration is the 

physical location of the data sources. There are two general cases, the first of which is that the 

3-9 



desired data resides in a single database or in multiple databases on a single server. The second is 

when the data to be accessed resides on different machines. 

The second case will be the primary concern. The fact that a web component needs to 

access data on several different machines can affect a design by increasing its complexity and 

introducing potential security and performance issues. 

When designing a component that provides access to a single database, the task is 

simplified by only having to interface with one data source.   The addition of a second source, 

however, can mean that the developer must write code to deal with two servers who may provide 

access to their data in different ways. As an example: an application component needs to access 

database A on one machine which provides access through a JDBC-ODBC driver, and data on 

machine B that is only available through a CORBA interface.   Assuming the developer wishes to 

use an applet that is sent to the client with a web page, he will have to include the necessary code 

to access each separate database within the applet. This adds to the size and number of class files 

that will have to be downloaded to run the applet, making the code more difficult to create and 

maintain. 

Attempting to access several machines can also violate a browser's security constraints. 

This is because, as a security measure, most web browsers will only let applets connect to the 

machine from which they were served the web page. Although the latest browsers are allowing 

this access through several different means17, the designer still risks denying access to a large 

number of clients that use an older browser. 

The additional code complexity and security protocols involved in accessing several 

databases on different machines also decreases the performance of the client by introducing more 

processing and communications overhead. Accessing the data directly from each database, 

however, is not the only possible solution to be considered. Others solutions include using a 

This can be done through the use of security certificates or the voluntary relaxation of the 
browser's security parameters. 

3-10 



three-tiered approach as discussed in chapter 2, (section 2.3.2) in which a server process on one 

machine handles the interaction with the databases by receiving requests from the client and 

executing them on the appropriate database servers. The aggregate results are then passed back to 

the client from this middle-tier process. 

The benefit of a three-tiered approach is that since the middle-tier is an application rather 

than an applet it can connect to other machines without the security restrictions imposed by the 

client's browser. It can also maximize the performance of data access by residing on a server 

with a fast communications path to the database. In a three-tiered approach, an applet can 

communicate with the middle-tier using a variety of interfaces such as TCP/IP sockets, RMI, 

CORBA, or DCOM18, or even through custom protocols. 

It has been shown how the method of access chosen by the developer has a significant 

impact on performance. Therefore, to ensure that any performance loss is kept to a minimum, the 

developer needs to pick access and techniques such as using a three tiered architecture to help in 

this regard. 

3.2.3     Existing Resource Environment 

The third factor to consider when analyzing how to implement web-based data access is 

the existence of available resources to aid in the design process. These resources consist of time, 

money, and personnel. The availability of these will not only affect which tools and techniques a 

developer can use to design components, but also how much effort he can expend analyzing 

which of the many choices can be used to solve his data access problem. The methodology 

described in this chapter will aid the designer who is limited in at least one area, but most likely 

in two. 

As discussed, these standards may or may not be supported in a particular browser platform. 
For instance Microsoft has sworn to never support Sun's RMI because they believe DCOM is 
better. 

3-11 



3.2.3.1    Available time for development and maintenance 

Time, and its availability, can not only limit how the designer develops components, but 

also how well they can be maintained. A designer who also has to perform many other duties in 

the course of his work may lack the appropriate development or maintenance time needed for 

large-scale original system development. He should therefore seek to build components that are 

simple, clearly and completely documented, and that maximize code reuse whenever possible. If 

time is a limited resource, he may not have the ability to become familiar in detail with every 

possible technology before building any components. Because of this, the designer should at 

least be familiar with the capabilities and drawbacks of each technology in order to help him 

decide which best suits his design goals and environment constraints. 

The ability to maintain components may also be affected by the availability of time. By 

maximizing code reuse, writing clear and complete documentation and using accepted and well- 

supported technologies, the designer can simplify any necessary code maintenance. If he uses a 

technique that is not very well supported in the computer industry, or creates a 'stove-pipe' 

system, he may create a component that while perhaps small enough to develop in a time-limited 

environment, is very difficult and time consuming to maintain. For example, there is a wealth of 

knowledge on Java and the number of books being written on it is steadily increasing, so a 

developer can easily find answers to questions or help on a problem. 

Reusing existing, well-documented code when possible can ease many documentation 

difficulties due to time constraints. Another item in favor of the developer in this regard is that 

some development tools such as Java are self-documenting or can automate the process of 

documentation. 

3.2.3.2    Available funds for development 

Another resource that is often limited during development of components is funds. 

Budgetary constraints may provide a discriminator that eliminates one or more of the available 

3-12 



design tools. Although hardware upgrades may be necessary to support the increase in clients to 

a system, the developer should focus on the impact of software costs since it can be the biggest 

discriminator in choosing technologies for any implementation. For most cases, the cost of the 

client-side software, i.e., the browser, will not be a large concern since it usually already exists on 

the client's machine. Therefore the two items a developer may have to seek resources for, which 

are compared here, are the web server software and the development tools used to build 

components. Table 3 shows current pricing for some prevalent web servers and the operating 

systems they support. The level to which certain software technologies are supported can also 

vary between web servers, so designers should be familiar with the servers and the tools they 

support (Table 3). 

Table 3. Sample of Web Server Pricing 19 

Web Server 

Apache Web Server 
IBM Internet Connection Server 
Java Web Server 
Jigsaw Web Server 
Microsoft Internet Information Server 
Microsoft Personal Web Server22 

Netscape Enterprise Server 

Supported OS* 

AM. U, O, W. WN 
AS. O. MV. U 
O, W. WN. U 
M. O. W. WN, U 
WN 
W,WN 

U,W,WN 

Server-sidt 
Processing 

C,J 
C.J 
C,J 
C,J 
A,C,J 
A, C,J 

J,C 

Apache Group 
IBM 
Sun Microsystems 
W Consortium 
Microsoft 
Microsoft 

Netscape Communications 

* AM - Amiga AS - AS/400 M - Macintosh ** J - Java servlets 
MV - MVS O - OS/2 W - Windows 95 C-CGI 

WN - Win NT A - ActiveX Server Pages 

Free 
$0 - $99 
$295 
Free 
$2179.95 TT 

Free 

$0 - $995 

Additional costs can also arise from the developers need to use development tools in the 

creation of applications. For example, if he wishes to use ActiveX components in his design he 

will need to obtain Microsoft Visual C++ or Microsoft Visual Basic in order to create them. 

Applets are written in Java, which is currently free. However, some integrated development 

19 
There are other web servers, too numerous to list, ranging in price from $0 to $40,000 

[Hoffman97] 
Current prices as of 18 Nov 97 from various sources 
US is an individual component of the Microsoft BackOffice server suite of software. 
This is a limited capability version of Microsoft Internet Information Server that will support a 

smaller number of web clients 

20 

22 

3-13 



environments that can be used to develop components can be quite expensive. Table 4 shows the 

current costs for a small sample of these tools. 

Table 4. Sample of Development Tool Costs 

Development Tool Purpose Vendor Price" 

Integrated Java Development Environments Applet, Application Dev Various $50-$ 1000 
Java Development Kit Applet, Application Dev Sun Microsystems Free 

Java Servlet Development Kit Java Servlet Development Sun Microsystems Free 
Microsoft InterDev ASP Development Microsoft $215.00 

Microsoft Visual Basic ActiveX Development Microsoft $ 429.00 

Microsoft Visual C++, Professional Ed. ActiveX Development Microsoft $ 429.00 

Microsoft Visual J++ Applet, Application Dev Microsoft $ 80.95 

Overall, the impact of funding resources is that it can limit the tools at the developer's 

disposal. This, in turn, can determine which technologies are used in any implementation 

(Chapter 2, Table 1). Conversely, if the developer wishes to use a particular technology, such as 

ActiveX, in his components, this will possibly require the funds to purchase a tool that can 

produce ActiveX controls. 

3.2.3.3    Availability of development personnel 

The last development resource considered is personnel. The abundance or lack of 

personnel during the analysis and design phase will have great impact on how the developer 

chooses technologies for implementing database access components. If there are ample personnel 

for analysis and development, a more in-depth analysis can be done of the competing 

technologies. The additional personnel can also reduce the overall time needed for component 

development. 

Different personnel can simultaneously evaluate different implementations of the same 

component to determine which creates the best component in terms of portability, performance, 

and functionality. Additionally the developer can delegate the design of components comprising 

3-14 



a database access project, thus reducing the time taken to analyze, design, and implement the 

overall project. However, if there is a shortage of development personnel, the available time for 

analysis and design will reduced. The developer may then choose to produce components using a 

technology that he is familiar with or one that develops a web component through a development 

tool included with their DBMS. 

Since those two methods may not be the best for the project, the drawback of using this 

approach is that the speed at which the components can be developed may come at the expense of 

client-side portability and performance for both the client and server. 

Overall, if the developer is limited in personnel, he should at a minimum seek to learn the 

capabilities, drawbacks, and communications capabilities of the technologies to be considered 

before starting the analysis and design process. This way he can at least assess the major 

tradeoffs of competing technologies. 

3.3     Component Analysis and Design 

The previous three sections have discussed how the client environment, existing database 

structure, and available resources can influence the design of individual components. It will be 

important for the designer to have a clear understanding of each of those areas as he develops any 

components to access data over the web. 

This section takes a structured approach to creating the individual components that will 

make up an overall web-based access project. The methodology to be discussed will guide the 

developer in deciding which technologies will meet the specifications of each individual 

component. 

A component, in this sense, is an application or combination of applications, that 

implement one clearly defined function. A component itself may require several sub-components 

to perform its desired function. To illustrate this point, an example component to reserve a 

library study room will be analyzed and designed. The end product will be briefly described 

3-15 



followed by an explanation of how that solution was derived. The example will involve five sub- 

components. The first sub-component obtains the desired time slot from the user. The second 

queries a database to find out which rooms are available in that period. The third and fourth 

display the results to the user and handle a room reservation request respectively. The fifth sub- 

component processes, then displays the results of the request back to the user. Because the sub- 

components are not required to be part of one big application, they may be implemented using 

different technologies. This gives the designer the flexibility to consider all available technology 

options that can implement the particular function of a component. This flexibility means that 

there can be several solutions to any component design problem. Each solution can be considered 

better than any others given the right set of design constraints. The constraints are those derived 

from the three environmental factors discussed in this chapter. At this point however, the 

designer should be concerned with the functional analysis of a component, saving the 

implementation technology choices as the last step. 

3.3.1     Functional Analysis Overview 

In performing a functional analysis of the component to be designed, an object-oriented 

(OO) functional modeling diagram technique called a Data Flow Diagram, or DFD, is useful to 

depict the component's overall function [Rumbaugh90]. In the DFD, processes23 are represented 

as a circle containing a description of the process. Arcs leading into a circle denote an input to 

the process. Arcs leading out denote an output. Any persistent data stores24 are represented by 

the database name with a line above and below. Arrows on the arcs leading in and out of the data 

source indicate whether it is read-only or can be written to. Figure 14 shows the top-level DFD 

for the example problem. 

23 Synonymous with "component" when used in the context of functional decomposition. 

3-16 



desired_time_slot /" \ Scheduled room 

librarv_rooms 

Figure 14. DFD for Schedule Library Room Component 

Using functional decomposition, the component may now be decomposed into any 

necessary sub-components. As previously stated, the developer is not expressly prohibited from 

building a monolithic component that does everything. However, since different technologies can 

perform some functions better than others, that approach would not be desirable because it would 

limit him to one implementation technology. 

The next section discusses the decomposition of the library room-scheduling component 

into sub-components. When this decomposition is complete, the methodology requires that the 

lowest level functions be analyzed to choose a technology to implement each lowest-level 

function. The level to which decomposition is performed is at the designer's discretion.   It is 

important to note that although functional decomposition is used in this methodology to 

determine the sub-functions that need to be built, those sub-functions may be applications 

themselves. Therefore, proper software-engineering techniques should be applied recursively to 

analyze and design the individual sub-components in the technology chosen for them. In this 

case, the developer can implement the lowest level sub-functions (processes) in any technology. 

However, the individual sub-component itself will be built using a single technology such as a 

Java applet or ActiveX Server Page. 

These can consist of database files or other files used to hold intermediate results. 

3-17 



3.3.2      Component Functional Decomposition. 

When decomposing the processes of a component into sub-processes25 it is broken into 

smaller sub-components, whose function is a sub-task of the overall component process. In the 

fully decomposed DFD, the inputs and outputs to a sub-process may come from either the user or 

another sub-process. For example one component may take user input and send it to another 

component that queries the database and sends the results back to the first for display to the 

user26. 

Using the room reservation example, it is apparent that after decomposition, five sub- 

processes are required for implementation. As shown in Figure 15, the first function gets the 

desired start and stop time from the client. It then sends those times to the second function that 

must determine which rooms are available during that time slot. That process in turn sends the 

client the results of the query for viewing and reserving a room, if desired. If the client requests 

to reserve a room, the fourth process handles the request and sends the results to the fifth to be 

displayed for the client. 

Figure 15. Lowest Level DFD of Room Scheduling Component 

A sub-process will be considered synonymous with a sub-component. 
This would be the case in a three-tiered component architecture 

3-18 



The schedule room component is now decomposed to the lowest desired practical level. 

In the implementation of the decomposition, the processes will be built using one of the Internet 

software technologies described previously. The arcs represent the interconnection of sub- 

components using one of the communications protocols discussed in Chapter 2. The data to be 

passed between sub-components is listed on the arcs. 

3.4     Function Implementation 

The next step in the methodology is to take the fully decomposed component (Figure 15) 

and analyze the possible technologies that cab be used to implement each sub-component process 

bubble. In the OO design paradigm, the developer would now implement each function as a 

method within an application program. While he may choose to build the component in this 

manner, he is not bound to do this. The developer may choose to implement any or all sub- 

components in any of the existing web technologies rather than just a single one. 

Before picking technologies to implement each sub-function, it is important for the 

developer to be familiar with the methods in which the different technologies can communicate 

with each other. This is because the choice to implement a sub-component in a certain 

technology will limit what technology the developer can use for adjacent sub-components. For 

example a static HTML page can only originate from a web server process and can only send 

output to a sub-component that can receive an HTTP request. The next section looks at the 

interface protocols available to each technology. 

3.4.1     Component Interface Definition 

At this point it is important to look at each technology in terms of how it can interface 

with other technologies being considered. The following sections describe the interface of each 

technology and some implications of choosing that technology to implement a sub-process. 

3-19 



Downloaded compiled components (Java applet, ActiveX) 

Compiled code that executes on the client-side can interface with other components with 

great flexibility because it supports almost all of the interface communications methods discussed 

in Chapter 2. This type of application is also capable of making calls to a database over the 

Internet (via JDBC or ODBC) provided that a network database service is running on the data 

server. Figure 16 shows the possible protocol interfaces to client-side code components. 

y* NT > iv 
<      CORBA       > <^     Sockets      > 

NJ *f   Downloaded N \S 

DCOMiMh.n>    ComPiled   <    JDBCtj—     > 
si    ur Components >sj     \s ^ 

Figure 16. Interfaces to Client-side Compiled Components 

Stand-alone applications 

Stand-alone applications can interface with other components using both high-level 

protocols such as CORBA, RMI, and DCOM and low-level protocols such as sockets. This 

communications flexibility, coupled with their ability to perform complex processing tasks and 

database access (embedded SQL, JDBC, ODBC), makes stand-alone applications a powerful tool 

for applications in the middleware role of a three-tiered architecture. 

Except for web server software (Apache, Microsoft IIS, Java Web Server), stand-alone 

applications cannot interface with other components through the HTTP protocol. Consequently, 

they can only communicate with downloaded compiled components on the client-side or web 

server processes and other stand-alone applications on the server-side. Figure 17 depicts the 

interfaces available to stand-alone applications. Note the only difference from Figure 16 is the 

absence of HTTP as a possible protocol. 

3-20 



Stand-Alone 
< 

<? 
DCOM     „ 

Application 
RMI 

Figure 17. Interfaces to Stand-alone Applications 

Web Server Processing (Java Servlet, CGI, ASP) 

Web server processing components are very attractive because, unlike server-side stand- 

alone applications or client-side compiled code, they can receive input from and output to HTML 

documents using the HTTP protocol. This capability ensures that virtually all client browsers can 

use a function that is implemented with a server-side process. Since the web server process 

actually runs as part of the web server (a stand-alone application) it has the interface properties of 

stand-alone code. Consequently, it can make database calls and communicate to other processes 

using one of the supported communications protocols. It can also send HTTP requests to other 

server-side processes27. 

Figure 18 shows the interface to a web server process. Note the only difference between 

Figure 16 and Figure 18 is the addition of a two way arrow for HTTP indicating that web server 

processes can receive and process HTTP responses from other web-server processes. 

>xi r<> r\ 
<^   CORBA       > <       Sockets       > 

 r4v   Web Server   Jl rv 
DCOMJASW     > process     <    JPBC <■»««■ ^> 

J* ^V Jl       _^J|V 
<,     RMIiMrvM»      > <         HTTP         > 
\T   "                   LXv. >s.l— \jT 

Figure 18. Interfaces to Web Server Processes 

27 Called servlet chaining [JavaSoft97c] 

3-21 



One limitation of interfacing with a web server process is that although it can easily 

communicate with stand-alone applications and invoke other server-side processes, it can only be 

invoked by an HTTP request. On the output side, the only interface it can use to communicate 

with the user is via HTTP as an HTML document. This means that any resulting output to the 

user will be in the form of a static web page. A server-side process can indirectly send input to 

compiled code such as a Java applet, but it requires the developer embed references to the 

compiled component in the web page returned to the client. 

Static HTML page 

A static HTML document is the simplest of components that can be used to 

implement a function. This section concerns HTML documents that do not contain any 

embedded client-side compiled code. HTML can be used quite effectively for data input and 

output. Graphical data input forms that can be viewed by all browsers can be easily created with 

only the standard HTML command set. In addition, the HTML code can be augmented with 

scripts that can do input data validation and other client-side tasks [Gesing97]. Figure 19 shows 

the interface to a static HTML document. 

HTTP £> Static i  ■ HTTP % 
HTML 

Figure 19. Interface to a Static HTML document 

3-22 



The static HTML document's simplicity is its greatest limitation. It can only be generated 

from a web server or web server process sent to the client as an HTTP response, and can only be 

used to initiate HTTP requests as input to other components. This precludes the use of an HTTP 

request in communicating with all components except a web server process (ASP, CGI, servlet) 

or the web server itself. 

3.4.2    Implementing sub-components 

The component has now been functionally decomposed and the interface properties of the 

Internet technologies analyzed. The information gained in that process along with any design 

constraints imposed by the three environment factors can be used to begin making choices on 

technologies for implementing the component. 

The developer is now faced with the question of which sub-component to implement with 

a particular technology first. The answer is that any sub-component in which he is constrained by 

one or more of the three environment factors can be a starting point. This will usually occur in 

either a user interface, or a database access sub-component. For the example, the following 

assumptions are made regarding the design specification of the room reservation component: 

• the component will be accessed by external clients only 
• the clients use a variety of hardware platforms running a similar variety of 

operating systems (Unix, Windows, Macintosh, VMS, etc.) 
• some users may have low bandwidth connections (dial-ups) 
• the client interface should look the same on all platforms 
• the user should be able to print the reservation confirmation for their records 
• no database architecture changes are necessary to handle additional clients 

From the specification, it is apparent that due to the heterogeneous environment of the 

clients and the potential for low bandwidth connections, that the starting point would be at the 

user interface. In the example it was decided that all interface with the user (client) would be 

through static HTML pages. This maximizes the sub-component portability (visible on all 

browsers) and minimizes its bandwidth requirements (no downloaded code sent to client). 

3-23 



Therefore referring to Figure 15, sub-component 1.1 (Get Desired Reservation Time), 1.3 

(Display Room Availability), and 1.5 (Display Reservation Status) will be HTML pages. 

From the analysis of the software technologies and their interfaces, it is clear that an 

HTML page can only generate HTTP requests and only a web server process can generate an 

HTML page as output. Because of this, and the fact that all web pages will be served from a Java 

capable web server, a Java servlet was chosen to implement sub-components 1.2 (Determine 

Available Rooms) and 1.4 (Schedule Room). Since a servlet is capable of making JDBC calls to a 

data source, the choice of a servlet will perform the sub-component functions adequately. 

The implementation strategy for the component is now complete and the developer may 

now proceed with the analysis, design and coding of the sub-components using the software 

techniques he has chosen. 

3.5     Summary 

It has been shown that there may never be enough information to support the choice of 

only one particular technology for providing web-based data access. However, the three 

environment factors and knowledge of the capabilities of each Internet technology should be 

enough for a developer to make a choice. In the next chapter, the methodology outlined here is 

applied to implement three functional components that provide interaction with a relational 

database. The functions designed will be in the context of the case study (AFIT/CI). 

3-24 



4     Implementation of Methodology for the Case Study 

Chapter 2 provides a technical overview of Internet software techniques that can be used 

to enhance the client-server environment by providing web-based access to existing relational 

data sources. Chapter 3 provides a methodology to aid in the analysis and design of the software 

components that comprise a web-based data access project. This chapter presents an application 

of that methodology to a test case by describing the design and implementation of several web 

software components to provide access to existing AFIT/CI data sources. These components or 

applications perform functions that will benefit the CI staff, students and prospective students by 

providing new or enhanced access to AFIT/CFs students, institution, and base support data. 

The first component provides access to existing data on the academic institutions 

participating in the CI program. Prospective students can obtain information about the 

institutions and the programs currently attended by Air Force students. This access was 

previously unavailable outside the AFTT/CI program office. The second component allows a 

current student to view and submit changes to their personal data in the CI database. The last 

component will allow a CI student to submit training report input through the web to their 

program manager. This is an enabling technology to facilitate automation of an otherwise manual 

and error-prone process. 

4.1     Analysis of key development environment factors 

This section examines the three environmental factors discussed in Chapter 3, Section 

3.1, as they relate to the AFIT/CI test case. AFIT/CI will be analyzed by looking at the clients of 

any web database access, the existing CI database architecture, and the available development 

resources for building the web-based data access components. 

4-1 



4.1.1    Analysis of the AFIT/CI client environment 

Chapters 3, Section 3.2, states that the potential clients of any web-based data access fall 

into two categories, internal clients and external clients. The following two sub-sections discuss 

the AFIT/CI clients in each category and the impact their composition may have on the 

applications to be developed. 

4.1.1.1    Internal clients 

Internal clients consist of those persons who are assigned to or work on the AFIT/CI 

staff. Chapter 3, Section 3.2.1, states that because the developer has knowledge of the hardware, 

software, and network capabilities of these clients, he can be less concerned with portability of 

applications to different client platforms. For instance, if the internal clients use the Windows95 

operating system and the Internet Explorer web browser, he can use technologies, such as 

ActiveX, that can do more client-side functions (printing, file access) with greater efficiency than 

alternatives such as a Java applet. The developer can also use the knowledge of the connectivity 

of internal clients to determine how large and complex an application can be without affecting 

client performance. 

Size of client pool 

The internal client pool consists of approximately twenty-five program managers and 

other staff personnel within AFIT/CI.   The small number of clients in this category ensure that 

any server-side processing applications the developer chooses to create for this group will not 

overload the web server. 

4-2 



Operating system, hardware and web browser platform 

All internal client computers are IBM compatible PC-based computers. Each computer 

runs the Microsoft Windows95 operating system and has Microsoft Internet Explorer (version 3 

or 4) as its web browser software. While the developer can still develop applications using very 

portable technologies such as Java, this platform homogeneity gives him the ability to create 

powerful client and server-side applications that only run in Microsoft browsers and the 

Windows95 OS. For example, if he creates an application as an ActiveX component, it will only 

run on a Microsoft platform but will run at native speed and with native privileges (file access, 

printing, etc.), on the client's machine. Consequently, service to intranet (internal) clients will be 

very efficient. 

Network connectivity 

All internal clients are connected to the web server over a shared lOMBps LAN. This 

fast connection ensures that applications created for internal clients will not suffer any significant 

performance loss due to network traffic. Additionally because of the internal client's excellent 

network connectivity, applications developed as downloaded compiled code (applets, ActiveX) 

can be of greater size than those created for external clients who may have a slower connection. 

4.1.1.2    External clients 

There are two types of external clients interacting with AFIT/CI. The first type consists 

of students currently enrolled in an AFIT/CI sponsored program. The second is prospective CI 

students interested in obtaining information about the CI program, prospective institutions, and 

the application process. As stated in chapter 3, section 3.2.2, precise information on external 

clients can not be obtained with confidence. Because of this uncertainty, the developer must 

make an approximation of the number of external clients and an estimate of their possible 

platforms in order to design components for external client use. These estimates can aid the 

4-3 



developer in determining the necessary level of component portability and to ensure that any 

components designed for external use will not over burden the server. 

Size of client pool 

There are approximately six thousand long and short-term students currently enrolled in 

Air Force sponsored CI programs. Additionally AFTT/CI receives approximately 1000 

applications for the various CI programs yearly from prospective students. Therefore the 

estimated upper bound for the number of connecting external clients can be estimated at around 

7000. 

Because most components are designed exclusively for either current or prospective 

students and all external clients are not likely to access the server simultaneously, the number of 

actual concurrent connections is typically a small percentage ofthat upper bound. Even with a 

smaller number of connected clients, the external client pool is sufficiently large to require that 

any components be designed to minimize the work of the server when possible. This will help to 

increase client performance. Using connection statistics maintained by most web servers, the 

developer could assess the performance and effect on the server of any external components. 

The assessment can then be used to perform any necessary optimization on the components or the 

web server during the maintenance phase. 

Operating system and hardware platform 

External clients are typically Air Force officers, enlisted personnel or civilian government 

employees who may access components from work, school or home. Clients who access 

components from work or school use many operating systems to include Unix, VMS, Windows 

and Macintosh. Those that access from home predominately use a Windows/PC or Macintosh 

platform. The only requirement for an external client's OS/hardware platform is that it be capable 

of establishing a network connection and running web browser software. 

4-4 



Because of this uncertainty and the diversity of client platforms, components providing 

external access should be designed to maximize portability. 

Network connectivity 

External client connectivity to any CI data will typically be through the Internet and the 

bandwidth of any such connections will vary greatly. Some external clients may connect through 

a high speed LAN (megabits per second), while others connect through a slower dial-up Internet 

connection (kilobits per second). 

Developing large components may result in reasonable performance for clients connected 

over a LAN while the dial-up users may experience undesirable response times. Again the 

developer must plan for the worst case and design any downloaded components to be as small as 

possible. 

Client web browser software 

Consistent with the lack of information regarding their OS and hardware platform, the 

external client's browser software is also unknown. Even though the browser will likely be 

drawn from a small pool, as discussed in Chapter 2, current browsers vary greatly in some key 

respects. Therefore it is assumed that external clients may be using older browser versions that 

do not support some of the sophisticated features included in current browsers such as support for 

frames2* or scripts. For instance, older browser software may not be able to run client-side code 

such as JavaScript, applets or ActiveX controls. Therefore components for external clients 

should be designed with technologies that are supported in the largest possible subset of available 

browsers. For example, because all browsers support standard HTML, a component that presents 

information to the client as an HTML document is very portable. Additionally the developer can 

Divides the browser window into sections displaying different HTML documents 
simultaneously. 

4-5 



create a smart server, which can deliver client-tailored components to ensure portability. 

4.1.2     Analysis of the existing database architecture 

This section examines the effect of the existing AFIT/CI database architecture on the 

design and implementation of any web-database access components that might be developed. 

The existing database management system and location of the existing data sources will be 

analyzed with respect to any design or implementation limits they may place on the developer. 

Existing database management system 

AFIT/CI currently uses Microsoft Access as their database management system. The 

local database tables are populated by data that is imported by download from the Air Force 

Continuing Education System (ACES) database. Any changes to data elements that originate 

from ACES are not updated locally, but are submitted as changes to the organization that 

maintains the ACES database. The CI database will then reflect the changes on the next 

download. Data elements that exist only in the AFIT/CI database are updated locally by AFIT/CI 

personnel. 

Location of existing data sources 

AFIT/CI has no web server organic to its organization. They instead use the AFIT web 

server to service web clients. Because of this, a copy of the CI database is maintained on the 

AFrr web server to be used in web-based access. Because the data and server reside on the same 

platform, applications can access data with greater speed by eliminating the network 

communications overhead. However, the drawback to this approach is that both the DBMS and 

web server have to share resources (memory and processor) which can result in lower overall 

performance as the server's workload increases.   Additionally any updates to the database made 

through the web interface will need to be replicated to the original database. 

4-6 



4.1.3    Analysis of development resources 

This section covers the effects of the availability of development resources on the design 

and implementation of web-database access components. The effects of development personnel, 

funds, and time are all examined to show how they can effect the developer's design and 

implementation choices. 

Personnel 

There is currently one computer support person in AFIT/CI who is responsible for the 

database operations to include the importing of the ACES data. Likewise, one officer has the 

additional duty of maintaining the AFIT/CI web site, with the assistance of each PM in 

maintaining the pages for the program they manage. 

Aside from the computer support person, any web development or database work must 

be done in addition to any other daily duties. This affects the development cycle by increasing 

the time required to develop components and the need for outside personnel resources (AFIT/SC) 

to assist in development. 

Funding 

Funds for web development within AFIT/CI are not currently programmed into the 

budget. If the developer chooses to develop ActiveX components, the purchase of Visual C++ or 

Visual Basic would be required. Because AFIT/SC is using Microsoft IIS as their web server, 

developing components that run as web server processes will not be affected by a lack of funds. 

This is because IIS uses ActiveX Server Pages that are written in VBScript or JScript and require 

no compilation. ASP applications can be written with any text editor and are compiled by the 

web server upon being accessed. 

Additionally ASP pages can be developed and tested on any PC running the Microsoft 

4-7 



Personal Web Server (currently free). This means that no expensive hardware or server software 

is needed to develop and test applications. ASP components can be designed and tested locally 

and the finished product can be ported to the web server (IIS) with little or no changes. 

Time 

As stated above, the requirement for web development to take place in addition to normal 

duties will lengthen the time necessary to develop components. This can only be reduced by 

obtaining outside development resources or by the use of a twenty-five hour day29. 

4.2     Component analysis and design 

This section presents an analysis and design of the three components to be developed for 

the test case. Any requirements for the component are briefly described and then the component 

is analyzed using the functional decomposition technique shown in chapter 3. Following the 

analysis and design, technologies are chosen to implement the component. 

4.2.1     Component 1 (Institution / Program Information Search) 

The goal of this component is to provide prospective CI students with information on the 

institutions participating in the CI program, their associated degree programs, and available 

academic disciplines. This information can aid the prospective student in choosing a school or 

program to apply for. Currently this data is present in the MS Access database and only available 

locally to AFTT/CI staff. Prospective students must receive this information by contacting a 

program manager. This information exchange typically occurs through standard email, postal 

mail, telephone conversation, or unguided web searches.   Thus, in conjunction with the case 

study goals, this component will make more efficient use of existing data by providing it directly 

to the prospective students. This will reduce if not eliminate the time spent by program managers 

29 Currently used successfully in both theory and practice by the U.S. Army 

4-8 



on questions dealing with institution information and provide focus and structure to prospective 

student searches. 

4.2.1.1 Requirements Specification 

The students should be able to search for school information based by state, degree 

program, academic majors, or any combination of the three. The client must have the ability to 

print any returned results. 

The client should receive as a response to their institution query, a list of schools and AF- 

sponsored academic programs sponsored by the school. A client should then have the ability to 

select for display additional information about the institution, the supporting base, and host 

ROTC detachment (where applicable). 

4.2.1.2 Functional Decomposition 

This component queries the CI database for institutions based on three possible input 

parameters obtained from the client. The three parameters are the client's desired location (state), 

degree offerings or academic program. The output will be institution information satisfying the 

client's query. Figure 20 shows the top level (level 0) DFD for the institution search component. 

State 
Degree_offered 
Academic_program / Jf" \    Civilian Institution Information 

CI database 

Figure 20. Level 0 DFD for Institution Search Component 

4-9 



The requirements specify that the student is able to obtain a list of schools, and then if 

desired, see additional information on a particular school. The component can therefore be 

further decomposed into the functions shown in Figure 21. 

State 
Degree_offered 
Academic_program 

Institution Information 

Cl database 

Figure 21. First Level Decomposition of Institution Search Component 

In the next step the component is further decomposed to show the processes of the input 

from and display of data to the client (Figure 22). Because each circle now represents a clearly 

defined function that can be directly implemented in one of the software technologies discussed, 

no further decomposition is necessary. In the next section, specific technologies are chosen to 

implement each sub-component comprising the overall web component. 

Figure 22. Lowest Level Decomposition of Institution Search Component 

4-10 



4.2.1.3    Design Implementation 

As discussed in section 3.6 of Chapter 3, the designer must pick a sub-component as a 

starting point for choosing technologies for implementation. The requirement for clients to be 

able to print any results easily can be used as the basis for selecting the starting point in this 

scenario. This requirement means that any information displayed to the client is best displayed as 

an HTML document, because as described in Chapter 3, printing HTML documents is easily 

accomplished by the inherent printing capability of the client's web browser. Additionally, 

displaying data as HTML allows it to be displayed to the client in a more organized fashion using 

HTML's various text formatting and layout options. 

Additionally static HTML documents can be viewed in all browsers. This satisfies the 

need to ensure that the greatest number of users can view externally accessed components. 

Therefore any client-side functions (process circle 1.1, 1.3 and 2.2) are implemented using static 

HTML pages generated by a web server process. In view of the interface capabilities of static 

HTML pages as discussed in section 3.5.3.1, only server-side web processes can return data in 

HTML through the HTTP protocol. The two server-side processes (1.2 and 2.1) are therefore 

implemented as a web server process. 

Client-side sub-components 

In addition to the requirement to print results, Process 1.1 requires the client to input 

data. To make the selection of query parameters simple, the client is shown a map of the United 

States and a data input form (Figure 23). The client can either click on a state to see all 

institutions and programs in that state or they may enter a more specific query by filling in the 

data input form. The data input form allows them to select institutions based on state, program, 

and course of study. 

4-11 



;:.£*«■   £<«   yiew   fio   Fiwto   H* 

*   -   o   a  a   a a- a  £ «a- «-.li^'l 

AFIT Civilian Institution Search 

CHck on a State or use the form on the left for a detailed query. 

You ein do 4 mote detailed 
ctuch for ichoole utmg 

Üätfoaa: 
{Partial keywords 

can b* used 
ti:AiftOorCOUP} 

3TATE.KECHÖH 1 5 
8S08AM 

"3 
COUfiSSOFSTUBl' 

■jfewftM-j 

Send comments to: ci-wcbmaster(5ja5t a£mü 

  ten 4 

Figure 23. Screen-shot of sub-component 1.1 

Sub-component 1.3 displays the results of the institution query (server-side process 1.2) 

to the client. Institution names are in the form of HTTP hyperlinks (Figure 24). Selecting an 

institution name calls process 2.1, which queries the database for information on that institution. 

The result of the query executed in process 2.2 is displayed as a static HTML page (Figure 25). 

:|JIJJllJJI«i:MM«IIWM|lMl 
I £fc    Ed«    View    £0    Fjvorild    Help 

£  :"'.'. g ■& & & ££. i  £ If    ;-*«-JH 
AFIT/CI Institution Search Results 

[Click on the institution name to get detailed information.] 

nsrnvnoN air     STATE couRsr. OF amor     mmcf 
iiUNiygsrrv OF AMSKAATJAIRBANKS >^™*'«g <*K_ JMS_     MORAD- METRO 

umyiR'nr or ALASKA_AT F"AIPBAHL> IFAJRBäMKJ AK "   PHD       ELEIITRKAI. BKüHZFJUO 

ferBVBBrTYOF ALASKA AT FAIRBANKS ;[FAIRBAHKS *AK       §55""      IFHYSTCS         

TBack to Schools Pawl | f AFIT Homel I lAFTT/CI Homel 

Send comments to: ci-webmasterfS>.ant. af.mil 

:iÜfi 
zJ 

Figure 24. Screen-shot of sub-component 1.3 

4-12 



: F*»   E«   »e«   Bo   Fivort«   Help 

F.. '   t ,£L & Ä,2i i £ &   ;~-!-0 

| 

AFIT/CI Institution Search Results 
d 

/7« T7TVTION INFORUA TION 

t&- 

atnuNimmmoucoDE: UM» 

narmmaNmuEj             UNIVERSITY OF ALASKA AT FAIRBAUK; 

.iMMMtfiKS                                   J.^SvERHALLA 
1                                     FAIRBANKS, AK »TO 

i*S»W^iiiiöigSl« 

SUPPORTING BASE INFORMATION 

It surrotTmcapo: r-<Mss 

ll"*"""*-                   HELSOHAFB.AK 99705   i 

MHAGFTOCBti* 

  i§ 
lÄorofl^c-ÄHarr/MPos*« ra<w; 

'"' 
JOT4t3ZME?qrjZ> 

^TOR£it 

[Back to Schoob Past! | rAHT Homel 1 rAHT/CI Home]                                            It 

Send comments to: ci-webmasterl2lafitaf mu 
        AJ 

f                 '" -   •-    -        .     -     ar" 

Figure 25. Screen-shot of sub-component 2.2 

Server-side sub-components 

As discussed in the analysis of the existing database architecture (Chapter3, Section 3.3) 

AFIT/CI will serve its web pages and applications from Microsoft IIS. Therefore, these sub- 

components (1.2 and 2.1) were implemented as ActiveX Server Pages, which can easily access 

data in the AFIT/CI database (MS Access DBMS). 

The entire component (five sub-components) is implemented through the use of two 

ActiveX Server Pages. The first displays the image map and input form (Figure 23), processes 

the school search query, and returns the results to the client's browser as a static HTML page 

(Figure 24). If the client clicks the mouse on one of the school names, an HTTP request is sent to 

the second ASP which queries the database for information on a specific school and sends the 

results as a static HTML page to the client's browser (Figure 26). 

4-13 



Figure 26. Component DFD with implementation technologies 

4.2.2     Component 2 (CI Student Personal Data Update) 

The goal of this component is to provide CI Students with a means to view their personal 

data as it exists in the CI database and to submit any changes if necessary. The changes are sent 

by email to the database administrator for posting. There was no previous means for students to 

see their information over the web, and any changes to their data were submitted over the 

telephone or on hard copy (fax or mail) to their program manager. This component therefore 

provides a previously non-existent service to the student and program manager. 

4.2.2.1    Requirements Specification 

Any students accessing this component must be authenticated to ensure data security and 

to aid in obtaining the correct personal data to display. The student must be able to view the 

existing data in a form with accompanying spaces in which they can enter changes. They should 

be able to mark any changed fields by placing an 'X' in a box next to the field to indicate that 

changes exist. 

4-14 



Upon submitting the changes, the application must email the CI database administrator 

with notification of the requested changes including student name, field name, the old value, and 

the new value. The student should get a response indicating if their changes were sent 

successfully. 

4.2.2.2    Functional Decomposition 

The component takes the student's last name and last four digits of their social security 

number as input (for authentication), allows them to make changes to their personal data, and 

outputs the changes in an email message to the CI database administrator. Figure 27 shows the 

top level (level 0) DFD for the component. 

last name, 
last 4 SSAN 

Email w/ data changes 

Cl database 

Figure 27. Level 0 DFD for Personal Data Update Component 

The requirement for user authentication and email transport of any changes leads to the 

first level decomposition of the component displayed in Figure 28. 

Changes     \    Email w/data changes 

CI database 

Figure 28. First Level Decomposition of Personal Data Update Component 

4-15 



In order to view the personal data and make changes, the component must query the 

database and present the data to the client in an HTML form. When the client submits changes, 

the application must email them to the database administrator and inform the client of the 

outcome of the submission (successfully sent or an appropriate error). These requirements lead to 

the further decomposition of the component shown in Figure 29. This is the lowest level 

decomposition of the component since each circle performs one unique function. In Section 

4.2.2.3 further requirements and the existing development environment are analyzed to 

implement the sub-components shown in Figure 29. 

Figure 29. Lowest Level Decomposition of Personal Data Update Component 

4.2.2.3    Design Implementation 

This component will be accessed by external clients and therefore must be designed for 

client-side portability. The client's use a wide variety of platforms to access the data and 

therefore we will use standard static HTML pages for all the client interfaces (sub-component 1, 

2.2, and 3.2). The requirement for client-side portability (HTML) is used as the basis for 

4-16 



determining which technologies we will use to implement the component. 

The methodology from Chapter 3 allows that only server-side processes, specifically 

web-server processes, can generate static HTML pages sent to a client. We will therefore 

implement sub-components 2.1 and 3.1 as web server processes. From the client's point of view, 

sub-components 1, 2.2, and 3.2 will be static HTML pages. However, the web-server processes 

will generate the static HTML pages sent to the client. 

Client-side sub-components 

In order to meet the requirement for client authentication, sub-component 1 is a static 

HTML page (generated by a web-server process) in which the client can enter their last name and 

last four digits of their SSAN. This sub-component's function is implemented by a central 

application used to validate clients for all applications requiring authentication.   The central 

authentication component (menu.asp) invokes sub-component 2.1 by with a valid last name and 

last four (SSAN) as input parameters. By pressing a button in the authentication application the 

client submits the data entered into the form to be authenticated. If they are valid clients, their 

data is sent to sub-component 2.1. Figure 30 shows a screen-shot of the sub-component 1. 

xmmtmwm.imm'Mmmimumm 
I  a    &»   <*m    60   fjwriw   tfrto        _    i 

-      •    •    O      0      fl       ©      a     0      -K      ■ ^ 

Student Functions 

ENTER THE IN FORMA TTON REQUESTED BELOW TO SIGN-IN 

~3 

USMdfSSAN'l 

Sigatri j    Rgaetfbrm- \ •] 

f Return to AFIT/CI Home Page 11 f AFTT Home Page 1 

Maintained By: Lt Rick. Sutler ci--wcbmasteri3iafiLaf.mil 
Last Updated: 15 December 1997 

A Service of AHT/CI 

»J T~rn 
Figure 30. Screen shot of sub-component 1 

4-17 



Sub-component 2.1 queries the database for a record matching the last name and SSN 

(last four digits) supplied by the client in sub-component 1. If a match is found, a static HTML 

page is generated and sent to the client (sub-component 2.2). Sub-component 2.2 displays the 

personal data of the client. The client is allowed to indicate fields that need to be changed by 

placing an 'check' next to the field and by placing the new value next to the 'check'. Figure 31 

shows the HTML form displayed to the client by sub-component 2.2. 

I'WffmiTirirT^iHiiiiiHiHiiiiiiHirwiiHHanaBeanaaaawwMBBwwwwMMWB 

■> .  - . o   in   (S   ®   a  a   «   a  ta a 
'    Bttfc        ' <^i\* Stop     AätMh    -tkm   '   SMHfc   Tawdw *0U*n    OwMk    M*n*>     HM        FM : 

o 

,*»^"" 

Figure 31. Screen-shot of sub-component 2.2 

When the client has completed any necessary changes to their personal data, they press a button 

to submit the changes to sub-component 3.1 through an HTTP request. Sub-component 3.1 then 

builds a mail message containing only the data that needs to be changed. It then sends the 

message to the database administrator (Figure 32). Sub-component 3.1 (a web server process) 

then generates the static HTML page that informs the client of the outcome of their submission 

(Figure 33). 

4-18 



Fj 2D LT CHRISTOPHER S   KEAN - Peisonal Data 

£*»   £* ' bfe«   fio    FJVW«   ürt» : 

!j£l«J^|*liJ^JjaJ xj; tto»j  lt?[ 

Tte Afynrofijsflnrjwa 

S*ject     21' LT CHRI3TOPHEK 3. KEAI» - f «rsooi)D»U Clung« Stow» 
SnL- ta9J°S)^e?M l.yiili.i   II I 

|| On 1/29««. et 10:26:39 FM, 2D LT CHRISTOPHERS. KEAN submitted the following personal date, changes: 
!| FietdNeme: Ml 
I OldVelue: S 
:| HewVelue: T 
■} 

Figure 32. Mail sent to the database administrator 

uiaii!w^iifeii,i,^iiiiiii^iiii.iiJiijj.iJ.^u.B::iüi;u.iiii:ilji:iJiili.iM 
£*•    £*     iV."     So     Fpntos     H**| 

SKo      Hoteih     Home        Seacr,    FMUI    H<tav    Cher»««       •■■■""•■ Back 

Your changes were sent successfully. 
The changes you have submitted will not take effect immediatly. 
Check back in a few days to ensure that they have been posted. 

Thank You. 

The AHT/CI Staff 

f Return to AFTI/CI Home Page 11 f AFTT Home Page 1 

Maintained By: Lt Rick Sutler ci-vtebmaster@afit.af.mil 
Last Updated 15 December 1997 

A Service of AFTT/CI 

IB! 
dl 

Figure 33. Screen-shot of sub-component 3.2 

During the analysis of the existing database environment it was revealed that AFTT/CI 

would serve any data from a web server using Microsoft Internet Information Server. Sub- 

4-19 



component 2.2, and 3.1 will therefore be implemented as ActiveX Server Pages. Because ASP is 

the native web server processing method of IIS and is very capable of accessing the database, this 

technology can be used to accomplish the goals of the component. The client side static HTML 

sub-components, (1, 2.2, and 3.3) will be generated from ActiveX server pages (Figure 34). 

Figure 34. Component DFD with implementation technologies 

4.2.3     Component 3 (CI Student Training Input) 

The goal of this component is to provide CI students with an automated means to provide 

input to their program manager for use in the creation of their annual, directed, or final training 

report (TR), AF Form 475. This input allows the student to inform their program manager of any 

significant academic, professional, and personal accomplishments that can be incorporated into 

their TR. It allows the student to build a TR over the web and send it to their PM, who can read 

and modify it with an electronic form-publishing package (Delrina FormFlow) to produce the 

final document. 

4-20 



When building their TR over the web, this component builds a shell using existing data 

sources to fill in the student's administrative data and any previous TR comments submitted.   The 

AF-475 shell is then sent as an email attachment to the PM as a FormFlow data file. The PM can 

then load the data file (email attachment) into FormFlow to complete the report. 

Students currently send this input to their PM through email messages (text) or on hard 

copy (fax or postal mail). The PM must then enter the data into the AF-475 form, which is 

prepared using the Delrina FormFlow software. By using the existing database to build the shell, 

utilizing the web and email for transport, and by sending the shell in FormFlow format the 

process is quicker and less error prone.   This component helps eliminate the errors that can come 

from manually building the report, which reduces the amount of time spent making corrections. 

This improves student-program manager communications and significantly reduces the overall 

TR creation process. It also gives the student significantly more ownership of the TR 

development process. 

4.2.3.1    Requirements Specification 

Any students accessing this component must be authenticated to ensure data security and 

to aid in obtaining the correct administrative data for the AF-475 shell. Authenticated students 

must be able to enter their input into a reasonable facsimile of the actual Form 475 to get an 

indication if they can include more or less input in the blocks of the form. The shell should be 

filled in automatically with the student's administrative data. If the student previously submitted 

TR comments, the component will also fill those in for reference. If the student enters comments 

for the first time, the application should store them for subsequent TR inputs. When submitting 

the completed shell the client should be able to select from a list of Program Managers who can 

receive the input. This eliminates the need to know who their PM is or their PM's email address. 

The data must be sent as email attachments in FormFlow format to allow the PM to easily load 

and edit the form. 

4-21 



4.2.3.2    Functional Decomposition 

This component takes the student's last name and last four digits of their social security 

number as input (authentication), uses existing data sources to create and store an AF-475 shell, 

and sends the PM email with FormFlow data file attachments (the shell) as output. Figure 35 

shows the top level (level 0) DFD for the training report input component. 

Last name 
Last 4 of SSAN 

Email message w/ 
training report 
attached 

Cl database TR Block Comments 

Figure 35. Level 0 DFD for Training Input Component 

The requirements specify that the user must authenticate to use the component. It also 

stipulates that the resulting shell be sent (emailed) to the program manager. The component can 

therefore be further decomposed to the functions shown in Figure 36. 

TR Block Comments 

Email w/training 
report data 
attached 

Cl database TR data files 

Figure 36. First Level Decomposition of Training Input Component 

4-22 



In order to authenticate the client and to get the appropriate administrative data for 

validated clients, the component must query the database on the student's last name and last four 

of their SSAN. If authenticated the component should display the AF-475 shell. To send the 

form as an email attachment, the component must also build the attachments (data files) from the 

shell data entered by the student. It must also save the comment blocks entered by the students. It 

must build a list of the program managers who can receive TR inputs so the student can choose a 

recipient. It should then send the form to the chosen PM and a response to the client indicating 

whether the mail was sent. Therefore, the component can be further decomposed to reflect these 

facts (Figure 37). 

/    Validate    \ 
/       Student       \ 

Figure 37. Lowest Level Decomposition of Training Input Component 

Each process circle now accomplishes a distinct function that can be implemented using 

the technologies covered in Chapter 2. The next section shows the analysis of the requirements 

specification and existing environment factors in order to choose implementation technologies for 

4-23 



each of the sub-components (process circles). 

4.2.3.3    Design Implementation 

Like the first component developed (School Search) in Section 4.2.1, this component is to 

be accessed by external clients. The external clients using this component will be current CI 

students. Because it will be accessed by external clients using many platforms, the component 

must be as portable as possible. Therefore, all interfaces to the client should be in static HTML 

pages so that they can be viewed on the greatest possible number of platforms. We will use the 

need for portability (need for client-side static HTML) as the starting point when choosing 

technologies to implement the sub-components. 

It is stated in Chapter 3, that only a web server or web server process can send static 

HTML to a client, therefore any back-end (server) processing (process circles 2.1, 3.1, and 3.3) 

will be accomplished through a web server process. This back-end processing will include any 

necessary database access, fde I/O, and communications functions. All client interfaces (process 

circles 1, 2.2, 3.2, and 3.4) will be in the form of static HTML documents. Although sent to the 

client as static HTML, a web-server process will automatically generate these documents. 

Client-side sub-components 

In order to meet the requirement for client authentication, sub-component 1 is 

implemented by the same central authentication component as the component defined in Section 

4.2.2 (Figure 30). This insures that any calls to this component come from a validated client. 

The input to component 2.1 will be that of a validated client. 

Sub-component 2.1 queries the database on the last name and last four of the client. If a 

matching record is found, their administrative data and any prior TR input is obtained, and a static 

HTML page containing the AF-475 shell is displayed to the client by sub-component 2.2. Figure 

38 shows a screen shot of sub-component 2.2. 

4-24 



fj-AFITVCl -AF475 Input Tool v MtcrasalUnteinet.Expkw 

File    Etft    View    go    Favorites    Help 
*mmMa»\m*mmmwmEBm 

<=    Addiess I 

AUTOMATED AF-475 INPUT FORM 

I. IDENTIFICATION DATA (Read Af I 36-2J02 carefully before filling In any Hem) 

11 NAME dJat. firtt. AM<0* MtMJJ 

DOt; JAKE P  I SSAN 3 ORADE        k DAFSC 

000-00-0000 2D LT      92T1 
5. ORÖAN1ZATJON. COMMAND. AND LOCATION 

Air Force Institute of Technology (AETC). Wright-Patterson AFB OH 

B. PERIOD OF REPORT («x. 1 Jtn 08) 

FROM: 6^26/95 THRU: 6/1/97 

7- LENGTH OF 
COURSE 

Entered by AFIT/CI 

8  REASON FOR REPORT 

r ANMUAL 

rFWAL 

r OIRECTEO 

9. NAME AND LOCATION OF SCHOOLOR INSTITUTION 

INSTDETUDES POLIT, APO, AE 
10. NAME OR TITLE OF COURSE 

HUMANITIES  
II. REPORT DATA (Complete as apptkabfe for final report) 

IVäFCJ5/AER0RATW.WPEGREE AWARDED (nWAL ssftrntostomwdyi) 
r COURSE NOT COMPLETE (£/**«<>*//><(■» 

f*«toy)  

DISTINGUISHED GRADUATE 
P Y«4Utf«4«M!»ArM>>«#<totawO 

P AtODGPROGRAM 

4. D$ AWARD CWTERIA/COURSE NONCOMPLETION REASON 

III. COMMENTS (Mandatory) 

IACADEMIC ACOMPüSKME'N'TS " 

jS'lDone £$ Internet zone 
1    zl 

Figure 38. Screen-shot of sub-component 2.2 

The client then enters their TR inputs directly into the form. When the client has 

completed their input, they press a button to submit the form for mailing to their program 

manager. Sub-component 3.1 then receives the form data and builds temporary data files (in 

FormFlow format) to hold the information. It also ensures that the block comments of the student 

are stored in a database for future TR inputs by the same student. The sub-component then 

queries the database to obtain the names and email addresses of the Program Managers and 

generates a page containing a list of available PMs which is displayed to the client in process 3.2. 

Figure 39 shows how the list of PMs is displayed, allowing the client to choose a PM to send the 

data files to. After the client chooses a recipient, sub-component 3.3 is invoked to send the data 

files to the appropriate Program Manager via email. The client will then receive a response 

(process 3.4) indicating the success or failure of their submission. Figure 40 shows the response 

for a successful submission. 

4-25 



Efa   {*   '£*<*  fie.   ffftam   h«*> 

1-lnfxl 

* . ■  .o   a  A * «• a  0  »   *w 
tack St»     ft*«*    Horn   i   SMIJ>   Amota   Hahw   äamafc 

Send Your Automated AF-475 Input 

[Retumto AFIT/CI Home Page*! ITAEIT Home Page 1 

Maintained By:'LtIticic Stiuerciwebmtislert5lafit.af.nttl 
Last Updated; 15 December 1997 

A Semite of AHTVCI 

«] 

Figure 39. Screen-shot of sub-component 3.2 

; D:*ltö^1^^*0fc»ra^a^äfti^ü^(»n[t4^;asB.- Mictwott ifttwmt fttt&ää « 

Pf   f«   *t   ÜJ    fav»*e«   Udo 

Itocfc 
®   CD   ö ' «   a   «ai   * 
Slop      ffflfinh     Hone   <   $esdt   Favorites    Histoy    Cham* 

Your input was sent successfully. 

Thank You, 

Tie AHT/CI Staff 

IP» Ms™ 

[ Return to AHT/CIHome Page ] j fAFIT Home Page J 

Maintained By: Lt %ickSvlterci.Twbmaster{ayafii.af.ml 
Last Updated 15Decemt>er 1997 

A Service of AHT/CI 

Figure 40. Screen-shot of sub-component 3.4 

Server-side sub-components 

Knowing that AFIT/CI will serve all web pages using Microsoft IIS, the sub-components 

implemented as web-server processes (process 1, 2.1, 3.1, 3.3) will be created as ActiveX Server 

Pages. ActiveX Server Pages will allow the file I/O, database access, and email functions that are 

required of this component. 

The entire component (seven sub-components) is implemented through the use of three 

4-26 



ActiveX Server Pages. The first (af475.asp) receives the client's last name and last four and 

queries the AFIT/CI database to see if the student exists in their records. If a matching record is 

found, the client is sent a response containing a static HTML form that allows them to enter input 

into the AF-475 shell (Figure 38). The input is then sent to the second ASP (af475a.asp) which 

puts it into temporary data files and then queries the CI database for the list of Program Managers 

who can receive it. This list is then displayed to the client in a static HTML page containing a 

form with a drop down list (Figure 39). They can then select the recipient of the email. The third 

ASP (send475.asp) sends the temporary files to the selected PM and generates a response 

indicating the results (static HTML) of the attempt to email the data (Figure 40). Figure 41 shows 

the DFD for the TR input component indicating the implementation technologies. 

CI database 

Figure 41. Component DFD with implementation technologies 

4-27 



4.2.4     Summary 

In this chapter, it has been demonstrated how the methodology described in Chapter 3 

can be applied to solve real-world web-database access problems. In accordance with the goals 

of this research, the three components developed show that the methodology detailed in Chapter 3 

aids a developer in building components that provide more efficient and new ways to make use of 

existing relational data sources through the World Wide Web. 

Chapter five summarizes the goals, methodology and results of this research and presents 

several areas in which further research efforts can be directed. 

4-28 



5     Findings and Conclusions 

This research briefly examines the evolution of the client-server architecture and the 

emergence of the Internet and the World Wide Web in view of its impact on the client-server 

model. The benefits brought to the client-server model by the web and several difficulties with 

using the web in a client-server role are discussed in earlier chapters. A methodology to assist 

developers in choosing among competing Internet software technologies to provide web-based 

relational database access has been proposed (Chapter 3) and implemented (Chapter 4). 

5.1     Findings 

This section begins with an overview of the findings made during this research. Some 

specific issues surrounding the application of the methodology proposed in the research to the 

AFIT/CI test case are discussed. Also discussed are several findings relating to the use of several 

technologies that were applied in the test case. 

5.1.1     Overview 

In the analysis of AFTT/CI's operations, several distinct observations are made. The first 

and second observations deal with the external and internal client environment. The last 

observation pertains to the existing database management system architecture. 

When analyzing the external client environment it was difficult to estimate the number of 

potential clients who may access data and information available to potential students. While the 

number of external clients currently enrolled in a CI program is easily obtainable from the CI 

program managers of each CI program, the number of clients who may be considering applying 

for a CI program is much more difficult. No data is kept on the total number of applications 

made to the various CI programs and, understandably, no record is kept of direct inquiries made 

by prospective students to program managers. In light of this difficulty, an estimate of 

prospective clients was made with the aid of the CI staff. We have only moderate confidence in 

5-1 



the actual estimate, though the order of magnitude is considered appropriate. 

Not having more complete information on the potential size of external clients could 

result in an overloading of the web-server if the actual number of accesses eventually exceed the 

capacity of the server. Since AFTT is using Microsoft Internet Information Server (IIS) on a 

dedicated server, this should occur with low probability. However, periodically monitoring those 

components available to external clients can assist in preventing a server overload. This 

monitoring should include the collection of statistics such as the average number of daily or 

hourly hits on those pages, the average number of concurrent connections at any given time, and 

average number of distinct clients that access those components. Such information can be used 

periodically to determine the actual server load due to external clients. The site administrator or 

developer may then make adjustments as necessary. 

Conversely, the internal client environment is quite homogeneous. All internal client 

computers are PC based and are running the Microsoft Windows 95 operating system. With the 

exception of a small number of clients, all internal users are using Microsoft Internet Explorer 

(3.0 or 4.0) as their web browser. This is a distinct advantage for the developer, since any 

components developed using Microsoft technologies such as client-side VBScript or ActiveX will 

be assured to perform predictably and well. Components for these clients can therefore be 

developed that work in close harmony with the operating system, enjoying the ability to perform 

file I/O and printing and to run at native OS speed. To ensure a homogeneous client 

configuration continues to exist, AFTT/CI should require that all internal clients use Microsoft 

Internet Explorer if possible. 

In performing an analysis of the existing database architecture it was found that while the 

current Microsoft Access database was fulfilling current data needs, it has reached its ability to 

scale-up to further requirements. The database was designed and implemented prior to the 

emergence of the Internet or WWW and was designed for single-user, single-computer 

operations. As time progressed, the ability to access the data over a LAN was introduced and the 

5-2 



size of the database grew. The database is currently in excess of twenty megabytes of data. With 

the addition of web-related data such as email addresses, web page addresses, and persistent data, 

future web-based components such as on-line education plan maintenance and training report 

inputs will overburden the Access database. An appropriate recommended upgrade is described 

in Section 5.2.1. 

Another area of concern was the independent naming of fields within database tables for 

the same data (semantically). This made it difficult to determine the correct attributes required to 

perform join operations. For example, the field to represent a civilian institution's supporting 

CBPO is called CIV_INS00CBPO_CODE in the CI_QUERY_CIVILIAN_INSTiTUTION30 

table and called CBPO_CODE in the CI_QUERY_CBPO table. The absence of explicitly 

defined primary keys within tables, and tables that shared an obvious relationship that was not 

defined or had no relational integrity, also made the existing database analysis difficult. By not 

taking advantage of the most powerful aspects of relational databases, this not only affects the 

overall maintainability of the database, but also will hamper the performance of both local and 

web database operations. 

While the CI database has met all requirements placed on it to present, the additional 

performance, storage, and access needs of the additional data that can result from web-based 

access can be realized by reevaluating and redesigning the database. Specific recommendations 

on the design are made in Section 5.2.1. 

5.1.2     Issues regarding application of methodology and technologies applied 

This section describes the results of implementing the three components that comprise the 

test case using the technologies that were chosen as a result of the methodology. Each subsection 

covers a specific issue and proposes one or more possible solutions to resolve the issue. 

30 While they are in fact tables and not queries, many tables have the word 'QUERY' in their 
name. 

5-3 



The overall application of the methodology to the test case proved to be very flexible. 

After the initial functional analysis, design, and implementation of the first component (School 

Search Component), the expected web server platform for the components was changed. The 

component was originally implemented as a Java servlet designed to run on a Java enabled web 

server. The change in web server platform had no impact on the choice of which type of 

technology that would be used (a web server process) to perform the data access. The only 

impact was that the component was rewritten as an ActiveX Server Page, which is the native web 

server processing method of US. The functionality and behavior of the component remained 

unchanged. 

Several issues came to light during the implementation of the three components comprising 

the test case. They are the data security of the CI database, the need to perform data conversions 

on some student inputs, and the variations in how web browsers display standard HTML pages. 

5.1.2.1    Data Security 

In the analysis of the two web software components that would service current CI 

students, it was clear that an acceptable level of data security was necessary. While the data 

contained in the database is not classified, elements of it are covered by the Privacy Act of 1974. 

Therefore, measures were taken to ensure that only authorized clients could view a student's data. 

In order to verify that a client is authorized to view a student record, he must correctly 

enter his last name and the last four digits of his Social Security Number before viewing data. 

While this is not considered to be an infallible method of security, it was deemed appropriate for 

the type of data being stored. In addition to the client authentication process, web clients make 

no live updates into the main CI database. Only files containing recommended updates are 

provided to the PM for approval and commitment. 

The authentication for the two components that provide CI student functions (Personal 

Data Update, and TR Input) is implemented through an ActiveX Server Page (menu.asp) that 

5-4 



allows a client to log-in and then presents a menu of available functions to authenticated users. 

The student's last name and last four digits of their SSAN are passed as parameters to all 

components chosen from this menu. Upon leaving a component they reenter the menu 

application which ensures again that they are authentic. This is done to not only aid in retrieving 

their information, but to also ensure that they view only the data that pertains to them. While this 

data security plan is adequate, a better, more robust plan would incorporate the security features 

of the web server (IIS). Section 5.2.2 provides more detailed recommendations on implementing 

a data security plan for web clients. 

5.1.2.2    Data Conversion to support forms processing 

In implementing the Training Report Input Component (Chapter 4, Section 4.2.3) it was 

discovered that a data conversion of the student's TR input was necessary. The requirements 

specification stated that the output of the training report was to be sent to the program manager as 

an email attachment that could be saved and subsequently loaded into their automated forms 

processing package. The forms processing package in use by the program managers is Delrina 

FormFlow.   In order to read data into the FormFlow AF-475 form (Training Report) a data file 

must be created. The data file could be in several forms including an ASCII file in which the data 

fields were comma-delimited. This was the chosen format due to the low level of difficulty in 

creating ASCII files and the increased portability of ASCII data files when using past, present, 

and future versions of FormFlow. 

In order to determine the exact composition of the data file(s), FormFlow was used to 

create one from an existing file. The AF-475 form was loaded into FormFlow and every possible 

data field was filled in. The data was then exported to a comma-delimited ASCII file using 

FormFlow's export capability. In analyzing the files created in this process, it was discovered that 

two files were actually created. The first file was a header file that contained information on the 

specific data format required by the AF-475 form. The second file contained the comma- 

5-5 



delimited strings of actual data from the form. While the first file (header file) was based on the 

form and was static, the second file changed depending on the data in the form. 

With this knowledge, the component was developed to create both the header and data 

file from the TR input entered by the student (client), and to attach both files to the email sent to 

the PM. The PM could then easily save the attachments and load the data using FormFlow. 

FormFlow's inherent capability to read in the comma-delimited data files is accomplished by 

reading in the header file to determine the organization of the data, followed by the data in the 

data file. 

5.1.2.3    Variations in web browser interfaces 

In analyzing the external client environment (Chapter 3, Section 3.2.2) the developer can 

encounter many incompatibilities between client browser versions that can affect the way a 

component functions or is displayed on the client's machine. Chapter 4 shows how the developer 

could overcome several of the incompatibilities by using web server processes that return 

standard HTML pages to the client instead of downloaded components. 

While virtually all browsers support standard HTML, the way that they display the 

HTML-encoded information may vary between browsers. For example an HTML checkbox in 

Microsoft Internet Explorer appears as a circle that gets filled in when the box is checked. In 

Netscape 3.0 on the Solaris OS however, the same checkbox will appear as a button that can 

either be raised or depressed to indicate whether it is checked. 

Another area in which the client browsers may differ is in their screen resolution. An 

HTML object can appear differently in browsers with different screen resolutions. For instance at 

one resolution an HTML form set for 50% of the screen will appear much wider on a screen that 

is at a higher resolution. If the developer chooses to set the form width in screen pixels instead, 

the form may appear noticeably smaller on the screen with the higher resolution that displays 

more pixels. 

5-6 



While web server processes are capable of obtaining and reacting to client browser 

properties, they only receive some of the properties that can affect how the client views a web 

page. While this approach has some merit a more comprehensive approach would be to include 

the capability for clients to personalize the way a site is displayed on their browser. Section 5.4.2 

covers the concept of personalization in more detail and explains how it can be used to provide a 

more suitable client-interface. 

5.2     Recommendations 

Based on the knowledge gained from the background research and from designing and 

developing several web software components for AFIT/CI, the following recommendations are 

offered with regard to the existing database architecture and data security plan. 

5.2.1    Existing CI Database 

In order to prepare the AFTT/CI database for the increased processing demands required 

of web-accessible databases, and to take better advantage of the capabilities of a relational 

database, the following recommendations are offered: 

• Use Microsoft SQL server on the web server. Microsoft BackOffice, which is the 

AFIT web server software platform, contains a powerful relational database server named 

Microsoft SQL server. SQL server has the capability to access databases created with 

Microsoft Access, and has a greater capacity for concurrent connections and a more 

powerful database engine than Access.   The CI database can then be maintained in MS 

Access locally with a linked copy maintained on the web server using SQL server. 

• Reorganize the CI Database. The CI database should be redesigned using an entity- 

relational design tool such as Logic Works ERWin. Using this tool, CI personnel can 

identify the entities and associated attributes of all key players in the CI arena. Particular 

attention should be paid to ensuring that each table has a primary key, that semantically 

5-7 



like data attributes are named alike in all tables in which they appear, and that all 

relationships between tables are well defined and incorporated into the schema. Table 

names and attribute names should only be long enough to correctly identify what they 

are. For instance, there is no semantic loss in changing CIV_INS00CBPO_CODE to 

CBPO_CODE. Referential integrity should also be a main concern in the database to 

ensure that data is consistent between tables. While the attribute names and relationships 

can be modified within the existing database without data loss, adjusting the number or 

contents of tables may require more complex data transformations. These changes will 

maximize the performance of the database management system and ease the overall task 

of database maintenance. 

•    Addition of web related data to tables. Attributes should be added to the appropriate 

tables for the web address (URL) and email address of each civilian institution and the 

email addresses of each CI student and CI staff member. These attributes will allow web- 

based applications to take advantage of the information on other web sites, and to 

automatically take advantage of email systems as an automated data transport 

mechanism.   It will also allow prospective students to learn more information about a 

school from a school's web page. 

5.2.2     Data security measures. 

In order to provide flexible and more secure data security of the CI database (on the web 

server) the following recommendation is made. 

Use NT and IIS security. Internet Information Server (IIS) can be made to use the user 

account information of Windows NT (the server OS) when providing access to web 

applications. Each CI student should be provided a userid and password upon entering a 

CI program. The Windows NT user permissions of those IDs could then be used to 



control access to web components and database tables, and to maintain session 

information on connected clients. This would provide a data security mechanism that 

would be flexible and scalable. 

5.3 Conclusions. 

From the research conducted it is evident that there are many competing Internet software 

technologies that are capable of providing web-database access. However, from the results of 

applying the methodology provided in Chapter 3, it has been shown that by performing an 

analysis of the development environment and by functionally analyzing the components to be 

developed, that the developer can obtain all the necessary information required to make the 

appropriate choices of implementation technologies. 

Through the development of several web software components for AFIT/CI, it was 

further shown that web-based database access can not only create new functions and uses for 

existing data, but can also improve existing operational functions and data utilization. 

5.4 Future work 

There are several areas of study related to this research that provide both interesting and 

important avenues for further research. They include the use of CORBA for client-side access to 

distributed data sources and the use of personalization in designing client interface components. 

5.4.1     Using CORBA for distributed data access. 

The movement to use applications with a CORBA interface has gained momentum in 

enterprises that must make use of large amounts of distributed data. While CORBA provides a 

powerful method to exchange data, it has seen little application on the client-side. This is due to 

the fact that the ORB classes required by such an application are not part of the standard Java 

package and must therefore be downloaded with the application to the client's machine. The 

5-9 



large amount of downloaded code reduces the performance of the client, especially on low 

bandwidth connections [Acker97]. 

In 1997 however, Netscape Communications released its new web browser named 

Communicator.   Communicator includes a client-side ORB. If other web browser vendors 

follow suit, this advance could lead to smaller and more powerful database access applications 

that can use the ORB of the browser to access any distributed resources. By including the ORB 

in the browser, the amount of applications code that needs to be downloaded to the client is 

reduced, increasing client performance. 

This advance opens the door for many client-side applications that could benefit from a 

CORBA capability, most notably data intensive ones. Consequently, there are many 

opportunities to evaluate downloaded CORBA applications as a means of providing access to 

distributed databases (Object Oriented and relational). 

5.4.2    Varying server responses based on client platform configurations. 

Section 5.2.1 discussed the difficulties in providing a standard user interface to clients, 

even when the web software can detect their specific browser version. Many current trade 

resources and periodicals are giving increasing attention to web-sites that are personalizable 

rather than reactive to client settings. For instance, the first time a client uses a site he can 

provide some information that lets the server know things about his computer that will allow it to 

tailor output more precisely to the client. 

A client logging into a personalizable site for the first time might not only be checked to 

see what browser, but also may be asked questions regarding other settings. These settings may 

include the resolution at which the client's monitor is set and a color scheme that is pleasing to the 

client. Additionally, preferences on whether the client prefers applets or ActiveX controls, which 

client side scripts run best on their computer, which applications they wish to see have available 

to them, and a host of other possibilities may be stored. 

5-10 



This information on the client's preferences can persist in several ways. The web-site 

could write these preferences to a "cookie" that gets saved to the client's computer and gets sent 

with any HTTP request directed to that site. The web-server process can then read the cookie and 

deliver content to the user based on their preferences. An alternative method would be to save the 

client's preferences on the web-server. Upon entry to a site the client would then log-in, allowing 

the server to load their preferences for all pages sent to that client. 

While personalization allows the client to ensure that they have a functional interface and 

assists the web server in determining client properties, its main drawback is that it violates many 

tenets of an open architecture such as developers of Internet applications desire. Developers 

would again have to write several versions of any downloaded applications (ActiveX and Java) or 

client-side scripts (JScript, JavaScript, or VBScript). 

5.5     Remarks 

While the Internet software technologies applied in this research have provided a 

significant contribution to the traditional client-server environment, new and enhanced 

technologies are developed constantly. It therefore remains a daily technical and intellectual 

challenge to remain abreast of this ever-changing field of computing to ensure that applications 

developed make the best use of current client and server technology. 

5-11 



Bibliography 

[Acker97] 

[Baker97] 

[Chappell97] 

[Comell96] 

[Curtis97] 

[Gesing97] 

[Hamilton96] 

[Harmon97] 

[Hayes97] 

[Hoffinan97] 

[JavaScript97] 

[JavaSoft97a] 

[JavaSoft97b] 

[JavaSoft97c] 

Acker, Michael, L., 
An Examination of Multi-Tier Designs for Legacy Data Access, Thesis 
Dayton: Air Force Institute of Technology, 1997 

Baker, Sean; Cahill, Vinny; Nixon, Paddy. 
"BRIDGING BOUNDARIES: CORBA in Perspective", 
IEEE Internet (Sept-Oct 97): 52-57 

Chappell, David, Linthicum, David S., "ActiveX Demystified" 
BYTE (September 1997): 56-64 

Cornell, Julie, Building a Dynamic Web/Database Interface, Thesis 
Monterey: Naval Postgraduate School, 1996 

Curtis, David. "Java, RM and CORBA." 1997, WWWeb, 
http -.//www .omg org/news/wpj ava.htm, (15 Nov 97) 

Gesing, Ted, Schneider, Jeremy. JavaScript for the World Wide Web, 
Berkeley: Peachpit Press, 1997 

Hamilton, Mark A. "Java and the Shift to Net-Centric Computing.", 
IEEE Computer (August 1996): 31-39. 

Harmon, Trevor, "JavaBeans vs. ActiveX" 
Web Informant (July 1997): 13 

Hayes, Frank, "Everybody get Web Happy" 
Computerworld (February 97): 44 

Hoffman, Paul, "Paul Hoffman's Server Comparison Chart." WWWeb, 
http://webcompare.internet.com/chart.html. (12 Nov 97) 

"JavaScript Guide." 1997, WWWeb, 
http://developer.netscape.com/librarv/documentation/communicator/isguide4 
/index.htm 

"JDBC Guide: Getting Started." 1997, WWWeb, 
http://www.javasoft.com. (Jul 97) 

"Java™RMI Tutorial." 10 February 1997, WWWeb, 
http: //www.i avasoft.com/ (Aug 97) 

"The Java Servlet API", 1997, WWWeb, 
http://jserv.javasoft.com/products/iava- 
server/webserver/fcs/doc/servlets/api.html 
(14 Aug 97) 



[Kristula97] Kristula, Dave." The History of the Internet." March 1997, WWWeb 
http://www.davesite.com/webstation/net-histon.shtml (3 Dec 97) 

[Microsoft97a] 

[Microsoft97b] 

[Morgan97] 

[Morrison97] 

[Mueller97] 

[NCSA97] 

[NWG97a] 

[NWG97b] 

[OMG97a] 

[OMG97b] 

[Orfali97] 

[Perl97] 

[Pountain97] 

[Rumbaugh91] 

"Active Server Pages FAQ", 1997, WWWeb, 
http://www.microsoft.com/iis/guide/aspfaq.asp (18 Dec 97) 

"Understanding ODBC and OLE", 1997, WWWeb, 
http://www.microsoft.com/odbc/wpapers/odbcnoIe.htm (15 Nov 97) 

Morgan, Bryan, "CORBA meets Java" 
JavaWorld, (October 1997), WWWeb, 
http://iavaworld.com/iavaworld/iw-10-1997 (25 Oct 1997) 

Morrison, Michael, Java Unleashed, Second Edition. 
Indianapolis: Sams.net, 1997 

Mueller, John Paul, ActiveX from the Ground Up, 
Berkeley: Osborne, 1997 

"Common Gateway Interface." 1997, WWWeb, 
http://hoohoo.ncsa.uiuc.edu,/cgi/overview.html (21 Nov 97) 

Network Working Group, RFC2068, 
"Hypertext Transfer Protocol ~ HTTP/1.1", January 1997, WWWeb, 
http://www.eis.ohio-state.edu/htbiii/rfc/rfc2068 .html (3 Dec 97) 

Network Working Group, RFC2109, 
"HTTP State Management Mechanism", February 1997, WWWeb, 
htti3://w\v\v.cis.ohio-state.edu/htbin/rfc/rfc2109.html (4 Dec 97) 

"WhatisCorba?" 1997, WWWeb, 
http://w ww.omg .org/corba.htm (2 Dec 97) 

"Java, RMI, and CORBA.", OMG white paper, WWWeb 
http://www.omg.org/news/wpjava.htm 

Orfali, Robert; Harkey, Dan. 
Client / Server Programming with Java and CORBA, 
New York: John Wiley & Sons, 1997 

"Perl for Win32 Frequently Asked Questions (FAQ)", 1997, WWWeb, 
http://www.perl.org/CPAN/ports/win95/FAQ (14 Jul 97) 

Pountain, Dick, Montgomery, John, "Web Components" 
Byte (August 97): 56 - 68 

Rumbaugh, James; Blaha, Michael; Premerlani, William; Eddy, Frederick; 
Lorensen, William. Object Oriented Modeling and Design. 
Englewood Cliffs: Prentice Hall, 1991 



[Saadawi94] Saadawi, Tarek N., Ammar, Mostafa, H, El Hakeem, Ahmed 
Fundimentals of Telecommunication Networks. 
New York: John Wiley & Sons, 1994 

[WWW96] "Hypertext Markup Language (HTML)." November 5, 1996. WWWeb, 
http:/Atfww.w3.orgA)ub/WWW/Maikup/ (15 Nov 97) 



Vita 

Captain Daniel L. DiPiro was born on 15 July 1965 in Ansonia, Connecticut. He 

graduated from Notre Dame High School, West Haven, Connecticut in 1983. He enlisted in the 

Army in 1985 as a Computer Programmer / Analyst. In 1987 he was selected for the Army 

ROTC program and attended St. Thomas Aquinas College to complete a Bachelor of Science 

Degree in Business Administration / Management Information Systems. He graduated Summa 

Cum Laude in 1990 and received a commission as a Lieutenant in the U.S. Army Signal Corps. 

After attending the Signal Officer Basic Course and the Teleprocessing Operations Officer 

Course (TOOCII), his first assignment was to the 97th Signal Battalion (CENTAG NATO) as a 

communications platoon leader. 

In 1993 CPT DiPiro attended the Signal Officer Advanced Course and the Tactical 

Signal Operations Officer Course. He subsequently served as the Battalion Signal Officer for the 

297th Military Intelligence Battalion, Ft. Gordon, Georgia until 1995. In 1995 he was chosen to 

command Delta Company, 63d Signal Battalion, Ft. Gordon, Georgia. Following his company 

command, CPT DiPiro attended the Combined Arms Services and Staff School. In 1997 he 

began attending the Air Force Institute of Technology. After completing the AFIT program in 

1998, CPT DiPiro will be the Information Management Officer for the Directorate of 

Admissions, United States Military Academy at West Point. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
24 March 1998 

3. REPORT TYPE AND DATES COVERED 
Master's Thesis 

4. TITLE AND SUBTITLE 

Methodology for the Analysis and Design of Internet Software Components 
Providing Relational Database Access Through the World Wide Web 

6. AUTHOR(S) 

Daniel L. DiPiro, Captain, USA 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Institute of Technology 
2950 P Street 
WPAFB, OH 45433-7765 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GCS/ENG/98M-01 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

AFIT/CI 
1st Lt Rick Sutter 
2950 P Street 
WPAFB, OH 45433-7765 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION /AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This work examines the application of Internet software technologies to provide access to remote relational databases via the 
World Wide Web. The research applies these software technologies to assist the Air Force Institute of Technology Civilian 
Institute Program in improving operations and student-to-staff communication. 

An analysis of the existing Internet software technologies revealed several competing technologies capable of performing the 
same database access functions. The analysis further revealed weaknesses and inconsistencies in the existing AFIT/CI 
database. A methodology is proposed to assist in analyzing an existing development environment and in selecting among the 
competing technologies to provide the web-based database access. The methodology is applied to the AFIT/CI test case to 
demonstrate a technique of analyzing and designing web software components that will create new and improved uses for the 
existing CI database. Additional recommendations are also offered to improve the existing database operations. 

The results of applying the methodology demonstrated that it effectively focuses the developer on the key areas of the 
development environment necessary to choose among competing software technologies. Additionally, the methodology was 
proven to be flexible in response to changes in implementation technologies. 

14. SUBJECT TERMS 

Data Bases, Internet, Object Oriented Programming, Software Engineering 

15. NUMBER OF PAGES 
122 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 298-102 USAPPCV1.00 


